Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Magn Reson Imaging ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703143

ABSTRACT

Breast cancer is one of the most prevalent forms of cancer affecting women worldwide. Hypoxia, a condition characterized by insufficient oxygen supply in tumor tissues, is closely associated with tumor aggressiveness, resistance to therapy, and poor clinical outcomes. Accurate assessment of tumor hypoxia can guide treatment decisions, predict therapy response, and contribute to the development of targeted therapeutic interventions. Over the years, functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) techniques have emerged as promising noninvasive imaging options for evaluating hypoxia in cancer. Such techniques include blood oxygen level-dependent (BOLD) MRI, oxygen-enhanced MRI (OE) MRI, chemical exchange saturation transfer (CEST) MRI, and proton MRS (1H-MRS). These may help overcome the limitations of the routinely used dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) techniques, contributing to better diagnosis and understanding of the biological features of breast cancer. This review aims to provide a comprehensive overview of the emerging functional MRI and MRS techniques for assessing hypoxia in breast cancer, along with their evolving clinical applications. The integration of these techniques in clinical practice holds promising implications for breast cancer management. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.

2.
Eur Radiol ; 34(7): 4764-4773, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38112765

ABSTRACT

OBJECTIVES: The aim of this study was to apply spatiotemporal analysis of contrast-enhanced ultrasound (CEUS) loops to quantify the enhancement heterogeneity for improving the differentiation between benign and malignant breast lesions. MATERIALS AND METHODS: This retrospective study included 120 women (age range, 18-82 years; mean, 52 years) scheduled for ultrasound-guided biopsy. With the aid of brightness-mode images, the border of each breast lesion was delineated in the CEUS images. Based on visual evaluation and quantitative metrics, the breast lesions were categorized into four grades of different levels of contrast enhancement. Grade-1 (hyper-enhanced) and grade-2 (partly-enhanced) breast lesions were included in the analysis. Four parameters reflecting enhancement heterogeneity were estimated by spatiotemporal analysis of neighboring time-intensity curves (TICs). By setting the threshold on mean parameter, the diagnostic performance of the four parameters for differentiating benign and malignant lesions was evaluated. RESULTS: Sixty-four of the 120 patients were categorized as grade 1 or 2 and used for estimating the four parameters. At the pixel level, mutual information and conditional entropy present significantly different values between the benign and malignant lesions (p < 0.001 in patients of grade 1, p = 0.002 in patients of grade 1 or 2). For the classification of breast lesions, mutual information produces the best diagnostic performance (AUC = 0.893 in patients of grade 1, AUC = 0.848 in patients of grade 1 or 2). CONCLUSIONS: The proposed spatiotemporal analysis for assessing the enhancement heterogeneity shows promising results to aid in the diagnosis of breast cancer by CEUS. CLINICAL RELEVANCE STATEMENT: The proposed spatiotemporal method can be developed as a standardized software to automatically quantify the enhancement heterogeneity of breast cancer on CEUS, possibly leading to the improved diagnostic accuracy of differentiation between benign and malignant lesions. KEY POINTS: • Advanced spatiotemporal analysis of ultrasound contrast-enhanced loops for aiding the differentiation of malignant or benign breast lesions. • Four parameters reflecting the enhancement heterogeneity were estimated in the hyper- and partly-enhanced breast lesions by analyzing the neighboring pixel-level time-intensity curves. • For the classification of hyper-enhanced breast lesions, mutual information produces the best diagnostic performance (AUC = 0.893).


Subject(s)
Breast Neoplasms , Contrast Media , Ultrasonography, Mammary , Humans , Female , Middle Aged , Adult , Breast Neoplasms/diagnostic imaging , Aged , Retrospective Studies , Aged, 80 and over , Ultrasonography, Mammary/methods , Diagnosis, Differential , Adolescent , Young Adult , Spatio-Temporal Analysis , Image Enhancement/methods
3.
J Ultrasound Med ; 42(8): 1729-1736, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36789976

ABSTRACT

OBJECTIVES: We evaluated whether lesion-to-fat ratio measured by shear wave elastography in patients with Breast Imaging Reporting and Data System (BI-RADS) 3 or 4 lesions has the potential to further refine the assessment of B-mode ultrasound alone in breast cancer diagnostics. METHODS: This was a secondary analysis of an international diagnostic multicenter trial (NCT02638935). Data from 1288 women with breast lesions categorized as BI-RADS 3 and 4a-c by conventional B-mode ultrasound were analyzed, whereby the focus was placed on differentiating lesions categorized as BI-RADS 3 and BI-RADS 4a. All women underwent shear wave elastography and histopathologic evaluation functioning as reference standard. Reduction of benign biopsies as well as the number of missed malignancies after reclassification using lesion-to-fat ratio measured by shear wave elastography were evaluated. RESULTS: Breast cancer was diagnosed in 368 (28.6%) of 1288 lesions. The assessment with conventional B-mode ultrasound resulted in 53.8% (495 of 1288) pathologically benign lesions categorized as BI-RADS 4 and therefore false positives as well as in 1.39% (6 of 431) undetected malignancies categorized as BI-RADS 3. Additional lesion-to-fat ratio in BI-RADS 4a lesions with a cutoff value of 1.85 resulted in 30.11% biopsies of benign lesions which correspond to a reduction of 44.04% of false positives. CONCLUSIONS: Adding lesion-to-fat ratio measured by shear wave elastography to conventional B-mode ultrasound in BI-RADS 4a breast lesions could help reduce the number of benign biopsies by 44.04%. At the same time, however, 1.98% of malignancies were missed, which would still be in line with American College of Radiology BI-RADS 3 definition of <2% of undetected malignancies.


Subject(s)
Breast Neoplasms , Elasticity Imaging Techniques , Humans , Female , Sensitivity and Specificity , Elasticity Imaging Techniques/methods , Ultrasonography, Mammary/methods , Reproducibility of Results , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Biopsy , Elasticity , Diagnosis, Differential
4.
Ultraschall Med ; 44(2): 162-168, 2023 Apr.
Article in English | MEDLINE | ID: mdl-34425600

ABSTRACT

PURPOSE: In this prospective, multicenter trial we evaluated whether additional shear wave elastography (SWE) for patients with BI-RADS 3 or 4 lesions on breast ultrasound could further refine the assessment with B-mode breast ultrasound for breast cancer diagnosis. MATERIALS AND METHODS: We analyzed prospective, multicenter, international data from 1288 women with breast lesions rated by conventional 2 D B-mode ultrasound as BI-RADS 3 to 4c and undergoing 2D-SWE. After reclassification with SWE the proportion of undetected malignancies should be < 2 %. All patients underwent histopathologic evaluation (reference standard). RESULTS: Histopathologic evaluation showed malignancy in 368 of 1288 lesions (28.6 %). The assessment with B-mode breast ultrasound resulted in 1.39 % (6 of 431) undetected malignancies (malignant lesions in BI-RADS 3) and 53.80 % (495 of 920) unnecessary biopsies (biopsies in benign lesions). Re-classifying BI-RADS 4a patients with a SWE cutoff of 2.55 m/s resulted in 1.98 % (11 of 556) undetected malignancies and a reduction of 24.24 % (375 vs. 495) of unnecessary biopsies. CONCLUSION: A SWE value below 2.55 m/s for BI-RADS 4a lesions could be used to downstage these lesions to follow-up, and therefore reduce the number of unnecessary biopsies by 24.24 %. However, this would come at the expense of some additionally missed cancers compared to B-mode breast ultrasound (rate of undetected malignancies 1.98 %, 11 of 556, versus 1.39 %, 6 of 431) which would, however, still be in line with the ACR BI-RADS 3 definition (< 2 % of undetected malignancies).


Subject(s)
Breast Neoplasms , Elasticity Imaging Techniques , Female , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Elasticity Imaging Techniques/methods , Prospective Studies , Sensitivity and Specificity , Diagnosis, Differential , Reproducibility of Results , Ultrasonography, Mammary/methods , Biopsy
5.
Radiol Med ; 128(6): 689-698, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37221356

ABSTRACT

PURPOSE: To assess 18F-Fluoroethylcholine (18F-FEC) as a PET/MRI tracer in the evaluation of breast lesions, breast cancer aggressiveness, and prediction of lymph node status. MATERIALS AND METHODS: This prospective, monocentric study was approved by the ethics committee and patients gave written, informed consent. This clinical trial was registered in the EudraCT database (Number 2017-003089-29). Women who presented with suspicious breast lesions were included. Histopathology was used as reference standard. Simultaneous 18F-FEC PET/MRI of the breast was performed in a prone position with a dedicated breast coil. MRI was performed using a standard protocol before and after contrast agent administration. A simultaneous read by nuclear medicine physicians and radiologists collected the imaging data of MRI-detected lesions, including the maximum standardized 18F-FEC-uptake value of breast lesions (SUVmaxT) and axillary lymph nodes (SUVmaxLN). Differences in SUVmax were evaluated with the Mann-Whitney U test. To calculate diagnostic performance, the area under the receiver operating characteristics curve (ROC) was used. RESULTS: There were 101 patients (mean age 52.3 years, standard deviation 12.0) with 117 breast lesions included (30 benign, 7 ductal carcinomas in situ, 80 invasive carcinomas). 18F-FEC was well tolerated by all patients. The ROC to distinguish benign from malignant breast lesions was 0.846. SUVmaxT was higher if lesions were malignant (p < 0.001), had a higher proliferation rate (p = 0.011), and were HER2-positive (p = 0.041). SUVmaxLN was higher in metastatic lymph nodes, with an ROC of 0.761 for SUVmaxT and of 0.793 for SUVmaxLN. CONCLUSION: Simultaneous 18F-FEC PET/MRI is safe and has the potential to be used for the evaluation of breast cancer aggressiveness, and prediction of lymph node status.


Subject(s)
Breast Neoplasms , Fluorodeoxyglucose F18 , Humans , Female , Middle Aged , Radiopharmaceuticals , Magnetic Resonance Imaging/methods , Positron-Emission Tomography/methods , Breast Neoplasms/pathology , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology
6.
Eur Radiol ; 32(10): 6557-6564, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35852572

ABSTRACT

OBJECTIVES: Due to its high sensitivity, DCE MRI of the breast (MRIb) is increasingly used for both screening and assessment purposes. The Kaiser score (KS) is a clinical decision algorithm, which formalizes and guides diagnosis in breast MRI and is expected to compensate for lesser reader experience. The aim was to evaluate the diagnostic performance of untrained residents using the KS compared to off-site radiologists experienced in breast imaging using only MR BI-RADS. METHODS: Three off-site, board-certified radiologists, experienced in breast imaging, interpreted MRIb according to the MR BI-RADS scale. The same studies were read by three residents in radiology without prior training in breast imaging using the KS. All readers were blinded to clinical information. Histology was used as the gold standard. Statistical analysis was conducted by comparing the AUC of the ROC curves. RESULTS: A total of 80 women (median age 52 years) with 93 lesions (32 benign, 61 malignant) were included. The individual within-group performance of the three expert readers (AUC 0.723-0.742) as well as the three residents was equal (AUC 0.842-0.928), p > 0.05, respectively. But, the rating of each resident using the KS significantly outperformed the experts' ratings using the MR BI-RADS scale (p ≤ 0.05). CONCLUSION: The KS helped residents to achieve better results in reaching correct diagnoses than experienced radiologists empirically assigning MR BI-RADS categories in a clinical "problem solving MRI" setting. These results support that reporting breast MRI benefits more from using a diagnostic algorithm rather than expert experience. KEY POINTS: • Reporting breast MRI benefits more from using a diagnostic algorithm rather than expert experience in a clinical "problem solving MRI" setting. • The Kaiser score, which provides a clinical decision algorithm for structured reporting, helps residents to reach an expert level in breast MRI reporting and to even outperform experienced radiologists using MR BI-RADS without further formal guidance.


Subject(s)
Breast Neoplasms , Breast , Algorithms , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Magnetic Resonance Imaging/methods , Middle Aged , ROC Curve , Retrospective Studies , Sensitivity and Specificity
7.
Eur Radiol ; 32(1): 661-670, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34324025

ABSTRACT

OBJECTIVES: To evaluate the diagnostic performance in the assessment setting of three protocols: one-view wide-angle digital breast tomosynthesis (WA-DBT) with synthetic mammography (SM), two-view WA-DBT/SM, and two-view digital mammography (DM). METHODS: Included in this retrospective study were patients who underwent bilateral two-view DM and WA-DBT. SM were reconstructed from the WA-DBT data. The standard of reference was histology and/or 2 years follow-up. Included were 205 women with 179 lesions (89 malignant, 90 benign). Four blinded readers randomly evaluated images to assess density, lesion type, and level of suspicion according to BI-RADS. Three protocols were evaluated: two-view DM, one-view (mediolateral oblique) WA-DBT/SM, and two-view WA-DBT/SM. Detection rate, sensitivity, specificity, and accuracy were calculated and compared using multivariate analysis. Reading time was assessed. RESULTS: The detection rate was higher with two-view WA-DBT/SM (p = 0.063). Sensitivity was higher for two-view WA-DBT/SM compared to two-view DM (p = 0.001) and one-view WA-DBT/SM (p = 0.058). No significant differences in specificity were found. Accuracy was higher with both one-view WA-DBT/SM and two-view WA-DBT/SM compared to DM (p = 0.003 and > 0.001, respectively). Accuracy did not differ between one- and two-view WA-DBT/SM. Two-view WA-DBT/SM performed better for masses and asymmetries. Reading times were significantly longer when WA-DBT was evaluated. CONCLUSIONS: One-view and two-view WA-DBT/SM can achieve a higher diagnostic performance compared to two-view DM. The detection rate and sensitivity were highest with two-view WA-DBT/SM. Two-view WA-DBT/SM appears to be the most appropriate tool for the assessment of breast lesions. KEY POINTS: • Detection rate with two-view wide-angle digital breast tomosynthesis (WA-DBT) is significantly higher than with two-view digital mammography in the assessment setting. • Diagnostic accuracy of one-view and two-view WA-DBT with synthetic mammography (SM) in the assessment setting is higher than that of two-view digital mammography. • Compared to one-view WA-DBT with SM, two-view WA-DBT with SM seems to be the most appropriate tool for the assessment of breast lesions.


Subject(s)
Breast Neoplasms , Paraganglioma , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Female , Histological Techniques , Humans , Mammography , Retrospective Studies , Sensitivity and Specificity
8.
Eur Radiol ; 32(6): 4101-4115, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35175381

ABSTRACT

OBJECTIVES: AI-based algorithms for medical image analysis showed comparable performance to human image readers. However, in practice, diagnoses are made using multiple imaging modalities alongside other data sources. We determined the importance of this multi-modal information and compared the diagnostic performance of routine breast cancer diagnosis to breast ultrasound interpretations by humans or AI-based algorithms. METHODS: Patients were recruited as part of a multicenter trial (NCT02638935). The trial enrolled 1288 women undergoing routine breast cancer diagnosis (multi-modal imaging, demographic, and clinical information). Three physicians specialized in ultrasound diagnosis performed a second read of all ultrasound images. We used data from 11 of 12 study sites to develop two machine learning (ML) algorithms using unimodal information (ultrasound features generated by the ultrasound experts) to classify breast masses which were validated on the remaining study site. The same ML algorithms were subsequently developed and validated on multi-modal information (clinical and demographic information plus ultrasound features). We assessed performance using area under the curve (AUC). RESULTS: Of 1288 breast masses, 368 (28.6%) were histopathologically malignant. In the external validation set (n = 373), the performance of the two unimodal ultrasound ML algorithms (AUC 0.83 and 0.82) was commensurate with performance of the human ultrasound experts (AUC 0.82 to 0.84; p for all comparisons > 0.05). The multi-modal ultrasound ML algorithms performed significantly better (AUC 0.90 and 0.89) but were statistically inferior to routine breast cancer diagnosis (AUC 0.95, p for all comparisons ≤ 0.05). CONCLUSIONS: The performance of humans and AI-based algorithms improves with multi-modal information. KEY POINTS: • The performance of humans and AI-based algorithms improves with multi-modal information. • Multimodal AI-based algorithms do not necessarily outperform expert humans. • Unimodal AI-based algorithms do not represent optimal performance to classify breast masses.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Algorithms , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Humans , Multimodal Imaging
9.
Eur Radiol ; 31(8): 5866-5876, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33744990

ABSTRACT

OBJECTIVES: Due to its high sensitivity, DCE MRI of the breast (bMRI) is increasingly used for both screening and assessment purposes. The high number of detected lesions poses a significant logistic challenge in clinical practice. The aim was to evaluate a temporally and spatially resolved (4D) radiomics approach to distinguish benign from malignant enhancing breast lesions and thereby avoid unnecessary biopsies. METHODS: This retrospective study included consecutive patients with MRI-suspicious findings (BI-RADS 4/5). Two blinded readers analyzed DCE images using a commercially available software, automatically extracting BI-RADS curve types and pharmacokinetic enhancement features. After principal component analysis (PCA), a neural network-derived A.I. classifier to discriminate benign from malignant lesions was constructed and tested using a random split simple approach. The rate of avoidable biopsies was evaluated at exploratory cutoffs (C1, 100%, and C2, ≥ 95% sensitivity). RESULTS: Four hundred seventy (295 malignant) lesions in 329 female patients (mean age 55.1 years, range 18-85 years) were examined. Eighty-six DCE features were extracted based on automated volumetric lesion analysis. Five independent component features were extracted using PCA. The A.I. classifier achieved a significant (p < .001) accuracy to distinguish benign from malignant lesion within the test sample (AUC: 83.5%; 95% CI: 76.8-89.0%). Applying identified cutoffs on testing data not included in training dataset showed the potential to lower the number of unnecessary biopsies of benign lesions by 14.5% (C1) and 36.2% (C2). CONCLUSION: The investigated automated 4D radiomics approach resulted in an accurate A.I. classifier able to distinguish between benign and malignant lesions. Its application could have avoided unnecessary biopsies. KEY POINTS: • Principal component analysis of the extracted volumetric and temporally resolved (4D) DCE markers favored pharmacokinetic modeling derived features. • An A.I. classifier based on 86 extracted DCE features achieved a good to excellent diagnostic performance as measured by the area under the ROC curve with 80.6% (training dataset) and 83.5% (testing dataset). • Testing the resulting A.I. classifier showed the potential to lower the number of unnecessary biopsies of benign breast lesions by up to 36.2%, p < .001 at the cost of up to 4.5% (n = 4) false negative low-risk cancers.


Subject(s)
Breast Neoplasms , Magnetic Resonance Imaging , Adolescent , Adult , Aged , Aged, 80 and over , Biopsy , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Contrast Media , Female , Humans , Middle Aged , ROC Curve , Retrospective Studies , Sensitivity and Specificity , Young Adult
10.
J Magn Reson Imaging ; 52(2): 589-595, 2020 08.
Article in English | MEDLINE | ID: mdl-32061002

ABSTRACT

Contrast-enhanced MRI (CE-MRI) is the most sensitive technique for breast cancer detection. Contrast-enhanced mammography (CEM) is emerging as a possible alternative to CE-MRI. PURPOSE: To evaluate the diagnostic performance of a low radiation dose contrast-enhanced mammography (L-CEM) in women with suspicious findings on conventional imaging compared to CE-MRI of the breast. STUDY TYPE: Prospective, single center. POPULATION: Women with suspicious findings on mammography, tomosynthesis, or ultrasound, and no contraindications for L-CEM or CE-MRI. Eighty women were included. FIELD STRENGTH/SEQUENCE: 1.5 and 3T CE-MRI, standard protocol for breast, with dedicated coils, according to international guidelines. L-CEM was performed using a dedicated prototype. ASSESSMENT: Three, off-site, blinded readers evaluated the images according to the BI-RADS lexicon in a randomized order, each in two separate reading sessions. Histology served as a gold standard. STATISTICAL TEST: Lesion detection rate, sensitivity, specificity, and negative and positive predictive values (NPV, PPV) were calculated and compared with multivariate statistics. RESULTS: Included were 80 women (mean age, 54.3 years ±11.2 standard deviation) with 93 lesions (32 benign, 61 malignant). The detection rate was significantly higher with CE-MRI (92.5-94.6%; L-CEM 79.6-91.4%, P = 0.014). Sensitivity (L-CEM 65.6-90.2%; CE-MRI 83.6-93.4%, P = 0.086) and NPV (L-CEM 59.6-71.4%; CE-MRI 63.0-76.5%, P = 0.780) did not differ between the modalities. Specificity (L-CEM 46.9-96.9%; CE-MRI 37.5-53.1%, P = 0.001) and PPV (L-CEM 76.4-97.6%; CE-MRI 73.3-77.3%, P = 0.007) were significantly higher with L-CEM. Variations between readers were significant for sensitivity and NPV. The accuracy of L-CEM was as good as CE-MRI (75.3-76.3% vs. 72.0-75.3%, P = 0.514). DATA CONCLUSION: L-CEM showed a high sensitivity and accuracy in women with suspicious findings on conventional imaging. Compared to CE-MRI, L-CEM has the potential to increase specificity and PPV. L-CEM might help to reduce false-positive biopsies while obtaining sensitivity comparable to that of CE-MRI LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2 J. Magn. Reson. Imaging 2020;52:589-595.


Subject(s)
Breast Neoplasms , Contrast Media , Adult , Aged , Breast Neoplasms/diagnostic imaging , Feasibility Studies , Female , Humans , Magnetic Resonance Imaging , Mammography , Middle Aged , Prospective Studies , Sensitivity and Specificity
11.
Eur Radiol ; 30(11): 6052-6061, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32504098

ABSTRACT

OBJECTIVES: MRI is an integral part of breast cancer screening in high-risk patients. We investigated whether the application of the Kaiser score, a clinical decision-support tool, may be used to exclude malignancy in contrast-enhancing lesions classified as BI-RADS 4 on breast MRI screening exams. METHODS: This retrospective study included 183 consecutive, histologically proven, suspicious (MR BI-RADS 4) lesions detected within our local high-risk screening program. All lesions were evaluated according to the Kaiser score for breast MRI by three readers blinded to the final histopathological diagnosis. The Kaiser score ranges from 1 (lowest, cancer very unlikely) to 11 (highest, cancer very likely) and reflects increasing probabilities of malignancy, with scores greater than 4 requiring biopsy. Receiver operating characteristic (ROC) curve analysis was used to evaluate diagnostic accuracy. RESULTS: There were 142 benign and 41 malignant lesions, diagnosed in 159 patients (mean age, 43.6 years). Median Kaiser scores ranged between 2 and 5 in benign and 7 and 8 in malignant lesions. For all lesions, the Kaiser score's accuracy, represented by the area under the curve (AUC), ranged between 86.5 and 90.2. The sensitivity of the Kaiser score was high, between 95.1 and 97.6% for all lesions, and was best in mass lesions. Application of the Kaiser score threshold for malignancy (≤ 4) could have potentially avoided 64 (45.1%) to 103 (72.5%) unnecessary biopsies in 142 benign lesions previously classified as BI-RADS 4. CONCLUSIONS: The use of Kaiser score in high-risk MRI screening reliably excludes malignancy in more than 45% of contrast-enhancing lesions classified as BI-RADS 4. KEY POINTS: • The Kaiser score shows high diagnostic accuracy in identifying malignancy in contrast-enhancing lesions in patients undergoing high-risk screening for breast cancer. • The application of the Kaiser score may avoid > 45% of unnecessary breast biopsies in high-risk patients. • The Kaiser score aids decision-making in high-risk breast cancer MRI screening programs.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging , Carcinoma/diagnostic imaging , Decision Support Systems, Clinical , Adult , Aged , Aged, 80 and over , Area Under Curve , Breast/pathology , Breast Neoplasms/pathology , Carcinoma/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Early Detection of Cancer , Female , Humans , Image-Guided Biopsy , Magnetic Resonance Imaging , Middle Aged , Probability , ROC Curve , Retrospective Studies , Risk , Sensitivity and Specificity , Young Adult
12.
Eur Radiol ; 30(6): 3371-3382, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32065286

ABSTRACT

PURPOSE: To assess the additional value of quantitative tCho evaluation to diagnose malignancy and lymph node metastases in suspicious lesions on multiparametric breast MRI (mpMRI, BI-RADS 4, and BI-RADS 5). METHODS: One hundred twenty-one patients that demonstrated suspicious multiparametric breast MRI lesions using DCE, T2w, and diffusion-weighted (DW) images were prospectively enrolled in this IRB-approved study. All underwent single-voxel proton MR spectroscopy (1H-MRS, point-resolved spectroscopy sequence, TR 2000 ms, TE 272 ms) with and without water suppression. The total choline (tCho) amplitude was measured and normalized to millimoles/liter according to established methodology by two independent readers (R1, R2). ROC-analysis was employed to predict malignancy and lymph node status by tCho results. RESULTS: One hundred three patients with 74 malignant and 29 benign lesions had full 1H-MRS data. The area under the ROC curve (AUC) for prediction of malignancy was 0.816 (R1) and 0.809 (R2). A cutoff of 0.8 mmol/l tCho could diagnose malignancy with a sensitivity of > 95%. For prediction of lymph node metastases, tCho measurements achieved an AUC of 0.760 (R1) and 0.788 (R2). At tCho levels < 2.4 mmol/l, no metastatic lymph nodes were found. CONCLUSION: Quantitative tCho evaluation from 1H-MRS allowed diagnose malignancy and lymph node status in breast lesions suspicious on multiparametric breast MRI. tCho therefore demonstrated the potential to downgrade suspicious mpMRI lesions and stratify the risk of lymph node metastases for improved patient management. KEY POINTS: • Quantitative tCho evaluation can distinguish benign from malignant breast lesions suspicious after multiparametric MRI assessment. • Quantitative tCho levels are associated with lymph node status in breast cancer. • Quantitative tCho levels are higher in hormonal receptor positive compared to hormonal receptor negative lesions.


Subject(s)
Breast Neoplasms/metabolism , Breast/metabolism , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Intraductal, Noninfiltrating/metabolism , Carcinoma, Lobular/metabolism , Choline/metabolism , Lymph Nodes/metabolism , Multiparametric Magnetic Resonance Imaging/methods , Adult , Aged , Aged, 80 and over , Breast/diagnostic imaging , Breast/pathology , Breast Diseases/diagnostic imaging , Breast Diseases/metabolism , Breast Diseases/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/diagnostic imaging , Carcinoma, Ductal, Breast/pathology , Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging , Carcinoma, Intraductal, Noninfiltrating/pathology , Carcinoma, Lobular/diagnostic imaging , Carcinoma, Lobular/pathology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Middle Aged , Proton Magnetic Resonance Spectroscopy/methods , ROC Curve , Sensitivity and Specificity , Young Adult
13.
Breast Cancer Res ; 21(1): 136, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31801635

ABSTRACT

BACKGROUND: Available data proving the value of DWI for breast cancer diagnosis is mainly for enhancing masses; DWI may be less sensitive and specific in non-mass enhancement (NME) lesions. The objective of this study was to assess the diagnostic accuracy of DWI using different ROI measurement approaches and ADC metrics in breast lesions presenting as NME lesions on dynamic contrast-enhanced (DCE) MRI. METHODS: In this retrospective study, 95 patients who underwent multiparametric MRI with DCE and DWI from September 2007 to July 2013 and who were diagnosed with a suspicious NME (BI-RADS 4/5) were included. Twenty-nine patients were excluded for lesion non-visibility on DWI (n = 24: 12 benign and 12 malignant) and poor DWI quality (n = 5: 1 benign and 4 malignant). Two readers independently assessed DWI and DCE-MRI findings in two separate randomized readings using different ADC metrics and ROI approaches. NME lesions were classified as either benign (> 1.3 × 10-3 mm2/s) or malignant (≤ 1.3 × 10-3 mm2/s). Histopathology was the standard of reference. ROC curves were plotted, and AUCs were determined. Concordance correlation coefficient (CCC) was measured. RESULTS: There were 39 malignant (59%) and 27 benign (41%) lesions in 66 (65 women, 1 man) patients (mean age, 51.8 years). The mean ADC value of the darkest part of the tumor (Dptu) achieved the highest diagnostic accuracy, with AUCs of up to 0.71. Inter-reader agreement was highest with Dptu ADC max (CCC 0.42) and lowest with the point tumor (Ptu) ADC min (CCC = - 0.01). Intra-reader agreement was highest with Wtu ADC mean (CCC = 0.44 for reader 1, 0.41 for reader 2), but this was not associated with the highest diagnostic accuracy. CONCLUSIONS: Diagnostic accuracy of DWI with ADC mapping is limited in NME lesions. Thirty-one percent of lesions presenting as NME on DCE-MRI could not be evaluated with DWI, and therefore, DCE-MRI remains indispensable. Best results were achieved using Dptu 2D ROI measurement and ADC mean.


Subject(s)
Breast Diseases/diagnostic imaging , Breast Diseases/pathology , Contrast Media , Diffusion Magnetic Resonance Imaging , Image Enhancement , Adult , Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Prospective Studies
14.
Eur J Nucl Med Mol Imaging ; 46(9): 1878-1888, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31197455

ABSTRACT

PURPOSE: To develop a multiparametric [18F]FDG positron emission tomography/magnetic resonance imaging (PET/MRI) model for breast cancer diagnosis incorporating imaging biomarkers of breast tumors and contralateral healthy breast tissue. METHODS: In this prospective study and retrospective data analysis, 141 patients (mean 57 years) with an imaging abnormality detected on mammography and/or ultrasound (BI-RADS 4/5) underwent combined multiparametric [18F]FDG PET/MRI with PET/computed tomography and multiparametric MRI of the breast at 3 T. Images were evaluated and the following were recorded: for the tumor, BI-RADS descriptors on dynamic contrast-enhanced (DCE)-MRI, mean apparent diffusion co-efficient (ADCmean) on diffusion-weighted imaging (DWI), and maximum standard uptake value (SUVmax) on [18F]FDG-PET; and for the contralateral healthy breast, background parenchymal enhancement (BPE) and amount of fibroglandular tissue (FGT) on DCE-MRI, ADCmean on DWI, and SUVmax. Histopathology served as standard of reference. Uni-, bi-, and multivariate logistic regression analyses were performed to assess the relationships between malignancy and imaging features. Predictive discrimination of benign and malignant breast lesions was examined using area under the receiver operating characteristic curve (AUC). RESULTS: There were 100 malignant and 41 benign lesions (size: median 1.9, range 0.5-10 cm). The multivariate regression model incorporating significant univariate predictors identified tumor enhancement kinetics (P = 0.0003), tumor ADCmean (P < 0.001), and BPE of the contralateral healthy breast (P = 0.0019) as independent predictors for breast cancer diagnosis. Other biomarkers did not reach significance. Combination of the three significant biomarkers achieved an AUC value of 0.98 for breast cancer diagnosis. CONCLUSION: A multiparametric [18F]FDG PET/MRI diagnostic model incorporating both qualitative and quantitative parameters of the tumor and the healthy contralateral tissue aids breast cancer diagnosis.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast/diagnostic imaging , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Multimodal Imaging , Positron-Emission Tomography , Adolescent , Adult , Aged , Aged, 80 and over , Breast/cytology , Breast/pathology , Female , Humans , Image Processing, Computer-Assisted , Middle Aged , Young Adult
15.
J Magn Reson Imaging ; 49(4): 1157-1165, 2019 04.
Article in English | MEDLINE | ID: mdl-30552829

ABSTRACT

BACKGROUND: Contrast-enhanced magnetic resonance imaging (CE-MRI) of the breast is highly sensitive for breast cancer detection. Multichannel coils and 3T scanners can increase signal, spatial, and temporal resolution. In addition, the T1 -reduction effect of a gadolinium-based contrast agent (GBCA) is higher at 3T. Thus, it might be possible to reduce the dose of GBCA at 3T without losing diagnostic information. PURPOSE: To compare a three-quarter (0.075 mmol/kg) dose of the high-relaxivity GBCA gadobenate dimeglumine, with a 1.5-fold higher than on-label dose (0.15 mmol/kg) of gadoterate meglumine for breast lesion detection and characterization at 3T CE-MRI. STUDY TYPE: Prospective, randomized, intraindividual comparative study. POPULATION: Eligible were patients with imaging abnormalities (BI-RADS 0, 4, 5) on conventional imaging. Each patient underwent two examinations, 24-72 hours apart, one with 0.075 mmol/kg gadobenate and the other with 0.15 mmol/kg gadoterate administered in a randomized order. In all, 109 patients were prospectively recruited. FIELD STRENGTH/SEQUENCE: 3T MRI with a standard breast protocol (dynamic-CE, T2 w-TSE, STIR-T2 w, DWI). ASSESSMENT: Histopathology was the standard of reference. Three blinded, off-site breast radiologists evaluated the examinations using the BI-RADS lexicon. STATISTICAL TESTS: Lesion detection, sensitivity, specificity, and diagnostic accuracy were calculated per-lesion and per-region, and compared by univariate and multivariate analysis (Generalized Estimating Equations, GEE). RESULTS: Five patients were excluded, leaving 104 women with 142 histologically verified breast lesions (109 malignant, 33 benign) available for evaluation. Lesion detection with gadobenate (84.5-88.7%) was not inferior to gadoterate (84.5-90.8%) (P ≥ 0.165). At per-region analysis, gadobenate demonstrated higher specificity (96.4-98.7% vs. 92.6-97.3%, P ≤ 0.007) and accuracy (96.3-97.8% vs. 93.6-96.1%, P ≤ 0.001) compared with gadoterate. Multivariate analysis demonstrated superior, reader-independent diagnostic accuracy with gadobenate (odds ratio = 1.7, P < 0.001 using GEE). DATA CONCLUSION: A 0.075 mmol/kg dose of the high-relaxivity contrast agent gadobenate was not inferior to a 0.15 mmol/kg dose of gadoterate for breast lesion detection. Gadobenate allowed increased specificity and accuracy. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1157-1165.


Subject(s)
Breast Neoplasms/diagnostic imaging , Magnetic Resonance Imaging , Meglumine/analogs & derivatives , Organometallic Compounds/pharmacology , Adult , Aged , Aged, 80 and over , Contrast Media/pharmacology , Cross-Over Studies , Double-Blind Method , Female , Humans , Image Processing, Computer-Assisted , Meglumine/pharmacology , Middle Aged , Multivariate Analysis , Prospective Studies , Sensitivity and Specificity
16.
J Magn Reson Imaging ; 50(3): 836-846, 2019 09.
Article in English | MEDLINE | ID: mdl-30811717

ABSTRACT

BACKGROUND: Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping is one of the most useful additional MRI parameters to improve diagnostic accuracy and is now often used in a multiparameric imaging setting for breast tumor detection and characterization. PURPOSE: To evaluate whether different ADC metrics can also be used for prediction of receptor status, proliferation rate, and molecular subtype in invasive breast cancer. STUDY TYPE: Retrospective. SUBJECTS: In all, 107 patients with invasive breast cancer met the inclusion criteria (mean age 57 years, range 32-87) and underwent multiparametric breast MRI. FIELD STRENGTH/SEQUENCE: 3 T, readout-segmented echo planar imaging (rsEPI) with IR fat suppression, dynamic contrast-enhanced (DCE) T1 -weighted imaging, T2 -weighted turbo-spin echo (TSE) with fatsat. ASSESSMENT: Two readers independently drew a region of interest on ADC maps on the whole tumor (WTu), and on its darkest part (DpTu). Minimum, mean, and maximum ADC values of both WTu and DpTu were compared for receptor status, proliferation rate, and molecular subtypes. STATISTICAL TESTS: Wilcoxon rank sum, Mann-Whitney U-tests for associations between radiologic features and histopathology; histogram and q-q plots, Shapiro-Wilk's test to assess normality, concordance correlation coefficient for precision and accuracy; receiver operating characteristics curve analysis. RESULTS: Estrogen receptor (ER) and progesterone receptor (PR) status had significantly different ADC values for both readers. Maximum WTu (P = 0.0004 and 0.0005) and mean WTu (P = 0.0101 and 0.0136) were significantly lower for ER-positive tumors, while PR-positive tumors had significantly lower maximum WTu values (P = 0.0089 and 0.0047). Maximum WTu ADC was the only metric that was significantly different for molecular subtypes for both readers (P = 0.0100 and 0.0132) and enabled differentiation of luminal tumors from nonluminal (P = 0.0068 and 0.0069) with an area under the curve of 0.685 for both readers. DATA CONCLUSION: Maximum WTu ADC values may be used to differentiate luminal from other molecular subtypes of breast cancer. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:836-846.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Adult , Aged , Aged, 80 and over , Biomarkers , Breast/diagnostic imaging , Breast/metabolism , Breast/pathology , Breast Neoplasms/metabolism , Cell Proliferation , Contrast Media , Echo-Planar Imaging , Female , Humans , Image Enhancement/methods , Middle Aged , Receptors, Estrogen , Receptors, Progesterone , Reproducibility of Results , Retrospective Studies
17.
Eur Radiol ; 27(9): 3799-3809, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28275900

ABSTRACT

OBJECTIVES: To assess whether using the Tree flowchart obviates unnecessary magnetic resonance imaging (MRI)-guided biopsies in breast lesions only visible on MRI. METHODS: This retrospective IRB-approved study evaluated consecutive suspicious (BI-RADS 4) breast lesions only visible on MRI that were referred to our institution for MRI-guided biopsy. All lesions were evaluated according to the Tree flowchart for breast MRI by experienced readers. The Tree flowchart is a decision rule that assigns levels of suspicion to specific combinations of diagnostic criteria. Receiver operating characteristic (ROC) curve analysis was used to evaluate diagnostic accuracy. To assess reproducibility by kappa statistics, a second reader rated a subset of 82 patients. RESULTS: There were 454 patients with 469 histopathologically verified lesions included (98 malignant, 371 benign lesions). The area under the curve (AUC) of the Tree flowchart was 0.873 (95% CI: 0.839-0.901). The inter-reader agreement was almost perfect (kappa: 0.944; 95% CI 0.889-0.998). ROC analysis revealed exclusively benign lesions if the Tree node was ≤2, potentially avoiding unnecessary biopsies in 103 cases (27.8%). CONCLUSIONS: Using the Tree flowchart in breast lesions only visible on MRI, more than 25% of biopsies could be avoided without missing any breast cancer. KEY POINTS: • The Tree flowchart may obviate >25% of unnecessary MRI-guided breast biopsies. • This decrease in MRI-guided biopsies does not cause any false-negative cases. • The Tree flowchart predicts 30.6% of malignancies with >98% specificity. • The Tree's high specificity aids in decision-making after benign biopsy results.


Subject(s)
Breast Neoplasms/classification , Image-Guided Biopsy/standards , Magnetic Resonance Imaging/methods , Adult , Aged , Area Under Curve , Breast Neoplasms/diagnostic imaging , Cross-Sectional Studies , Decision Support Techniques , Female , Humans , Middle Aged , ROC Curve , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Unnecessary Procedures
18.
Acta Radiol ; 58(2): 140-147, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27055918

ABSTRACT

Background Virtual Touch IQ (VTIQ) is a novel technique of quantitative sonoelastography that applies acoustic radiation force impulse (ARFI). Purpose To evaluate breast ARFI imaging with VTIQ in the clinical setting, with regard to reproducibility and diagnostic performance, and to specify cutoff limits for the differentiation of benign and malignant lesions. Material and Methods This retrospective study included 83 patients with 85 breast lesions (51 benign, 34 malignant) who received ARFI imaging with VTIQ. Two independent ARFI measurements of each lesion were performed and shear wave velocities (SWV) of the lesion and the adjacent tissues were measured. A lesion-to-fat velocity ratio (L/F Ratio) was calculated for each lesion. Diagnostic performance of SWV measurements and L/F Ratios was evaluated with receiver operating curve (ROC) analysis. The intraclass correlation coefficient and Bland-Altman plots were used to evaluate measurement reproducibility. Results All measurements showed equal diagnostic performance, as measured by the area under the ROC curve (0.853 for SWV, 0.882 for the L/F Ratio). At a cutoff value of 3.23 m/s, sensitivity and specificity were 82.4% and 80.4%, respectively. An L/F Ratio cutoff value of 2.23 revealed a sensitivity and specificity of 89.7% and 76.5%. The reproducibility of the SWV measurements was moderate (limits of agreement, 40.3-44.4%) and higher than that of the L/F Ratios (54.5-60.2%). Conclusion ARFI imaging with VTIQ is a novel, moderately reproducible, quantitative elastography technique, which provides useful information for the differentiation of benign and malignant breast lesions in the clinical setting.


Subject(s)
Breast Neoplasms/diagnostic imaging , Elasticity Imaging Techniques/methods , Ultrasonography, Mammary/methods , Adult , Aged , Aged, 80 and over , Breast/diagnostic imaging , Cross-Sectional Studies , Diagnosis, Differential , Female , Humans , Middle Aged , ROC Curve , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Young Adult
19.
NMR Biomed ; 29(10): 1445-53, 2016 10.
Article in English | MEDLINE | ID: mdl-27553252

ABSTRACT

Diffusion-weighted MRI (DWI) provides insights into tissue microstructure by visualization and quantification of water diffusivity. Quantitative evaluation of the apparent diffusion coefficient (ADC) obtained from DWI has been proven helpful for differentiating between malignant and benign breast lesions, for cancer subtyping in breast cancer patients, and for prediction of response to neoadjuvant chemotherapy. However, to further establish DWI of breast lesions it is important to evaluate the quantitative imaging biomarker (QIB) characteristics of reproducibility, repeatability, and diagnostic accuracy. In this intra-individual prospective clinical study 40 consecutive patients with suspicious findings, scheduled for biopsy, underwent an identical 3T breast MRI protocol of the breast on two consecutive days (>24 h). Mean ADC of target lesions was assessed (two independent readers) in four separate sessions. Reproducibility, repeatability, and diagnostic accuracy between examinations (E1, E2), readers (R1, R2), and measurements (M1, M2) were assessed with intraclass correlation coefficients (ICCs), coefficients of variation (CVs), Bland-Altman plots, and receiver operating characteristic (ROC) analysis with calculation of the area under the ROC curve (AUC). The standard of reference was either histopathology (n = 38) or imaging follow-up of up to 24 months (n = 2). Eighty breast MRI examinations (median E1-E2, 2 ± 1.7 days, 95% confidence interval (CI) 1-2 days, range 1-11 days) in 40 patients (mean age 56, standard deviation (SD) ±14) were evaluated. In 55 target lesions (mean size 25.2 ± 20.8 (SD) mm, range 6-106 mm), mean ADC values were significantly (P < 0.0001) higher in benign (1.38, 95% CI 1.27-1.49 × 10(-3)  mm(2) /s) compared with malignant (0.86, 95% CI 0.81-0.91 × 10(-) (3)  mm(2) /s) lesions. Reproducibility and repeatability showed high agreement for repeated examinations, readers, and measurements (all ICCs >0.9, CVs 3.2-8%), indicating little variation. Bland-Altman plots demonstrated no systematic differences, and diagnostic accuracy was not significantly different in the two repeated examinations (all ROC curves >0.91, P > 0.05). High reproducibility, repeatability, and diagnostic accuracy of DWI provide reliable characteristics for its use as a potential QIB, to further improve breast lesion detection, characterization, and treatment monitoring of breast lesions.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers , Female , Humans , Image Enhancement/methods , Middle Aged , Observer Variation , Reproducibility of Results , Sensitivity and Specificity , Young Adult
20.
Eur Radiol ; 26(11): 3908-3916, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26984430

ABSTRACT

PURPOSE: The purpose of this study was to compare three different biopsy devices on false-negative and underestimation rates in MR-guided, vacuum-assisted breast biopsy (VABB) of MRI-only lesions. METHODS: This retrospective, single-center study was IRB-approved. Informed consent was waived. 467 consecutive patients underwent 487 MR-guided VABB using three different 8-10-gauge-VABB devices (Atec-9-gauge,A; Mammotome-8-gauge,M; Vacora-10-gauge,V). VABB data (lesion-type, size, biopsy device, histopathology) were compared to final diagnosis (surgery, n = 210 and follow-up, n = 277). Chi-square, and Kruskal-Wallis tests were applied. P values < 0.05 were considered significant. RESULTS: Final diagnosis was malignant in 104 (21.4 %), high risk in 64 (13.1 %) and benign in 319 (65.5 %) cases. Eleven of 328 (3.4 %) benign-rated lesions were false-negative (1/95, 1.1 %, A; 2/73, 2.7 %, M; 8/160 5.0 % V; P = 0.095). Eleven high-risk (11/77, 14.3 %) lesions proved to be malignant (3/26, 11.5 % A; 4/12, 33.3 % M; 4/39, 10.3 % V; P = 0.228). Five of 34 (14.7 %) DCIS were upgraded to invasive cancer (2/15, 13.3 %, A; 1/6, 16.6 % M; 2/13, 15.3 %, V; P = 0.977). Lesion size (P = 0.05) and type (mass vs. non-mass, P = 0.107) did not differ significantly. CONCLUSION: MR-guided VABB is an accurate method for diagnosis of MRI-only lesions. No significant differences on false-negative and underestimation rates were observed between three different biopsy devices. KEY POINTS: • MR-guided VABB is an accurate procedure for the diagnosis of MRI-only lesions. • Similar false-negative and underestimation rates allow all three different MR-guided VABB devices for clinical application. • High-risk lesions should undergo surgery due to a substantial underestimation rate. • Agreement between MR-guided VABB and final diagnosis (benign/malignant) was 95.5% (465/487).


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Carcinoma, Ductal, Breast/pathology , Adult , Aged , Biopsy, Needle/methods , Female , Humans , Image-Guided Biopsy/methods , Magnetic Resonance Imaging/methods , Middle Aged , Retrospective Studies , Vacuum
SELECTION OF CITATIONS
SEARCH DETAIL