Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Langmuir ; 37(17): 5222-5231, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33886317

ABSTRACT

Perfluorocarbon (PFC) filled nanoparticles are increasingly being investigated for various biomedical applications. Common approaches for PFC liquid entrapment involve surfactant-based emulsification and Pickering emulsions. Alternatively, PFC liquids are capable of being entrapped inside hollow nanoparticles via a postsynthetic loading method (PSLM). While the methodology for the PSLM is straightforward, the effect each loading parameter has on the PFC entrapment has yet to be investigated. Previous work revealed incomplete filling of the hollow nanoparticles. Changing the loading parameters was expected to influence the ability of the PFC to fill the core of the nanoparticles. Hence, it would be possible to model the loading mechanism and determine the influence each factor has on PFC entrapment by tracking the change in loading yield and efficiency of PFC-filled nanoparticles. Herein, neat PFC liquid was loaded into silica nanoparticles and extracted into aqueous phases while varying the sonication time, concentration of nanoparticles, volume ratio between aqueous and fluorous phases, and pH of the extraction water. Loading yields and efficiency were determined via 19F nuclear magnetic resonance and N2 physisorption isotherms. Sonication time was indicated to have the strongest correlation to loading yield and efficiency; however, method validation revealed that the current model does not fully explain the loading capabilities of the PSLM. Confounding variables and more finely controlled parameters need to be considered to better predict the behavior and loading capacity by the PSLM and warrants further study.

2.
Chem Sci ; 12(7): 2441-2455, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-34164010

ABSTRACT

Multicolor carbon dots (CDs) have been developed recently and demonstrate great potential in bio-imaging, sensing, and LEDs. However, the fluorescence mechanism of their tunable colors is still under debate, and efficient separation methods are still challenging. Herein, we synthesized multicolor polymeric CDs through solvothermal treatment of citric acid and urea in formamide. Automated reversed-phase column separation was used to achieve fractions with distinct colors, including blue, cyan, green, yellow, orange and red. This work explores the physicochemical properties and fluorescence origins of the red, green, and blue fractions in depth with combined experimental and computational methods. Three dominant fluorescence mechanism hypotheses were evaluated by comparing time-dependent density functional theory and molecular dynamics calculation results to measured characteristics. We find that blue fluorescence likely comes from embedded small molecules trapped in carbonaceous cages, while pyrene analogs are the most likely origin for emission at other wavelengths, especially in the red. Also important, upon interaction with live cells, different CD color fractions are trafficked to different sub-cellular locations. Super-resolution imaging shows that the blue CDs were found in a variety of organelles, such as mitochondria and lysosomes, while the red CDs were primarily localized in lysosomes. These findings significantly advance our understanding of the photoluminescence mechanism of multicolor CDs and help to guide future design and applications of these promising nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL