Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Publication year range
1.
Int J Food Sci Nutr ; 72(2): 236-247, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32631124

ABSTRACT

This study evaluated the validity of nutrient and food group intakes estimated by an FFQ against biomarkers. A 71-item semiquantitative FFQ was administered to 210 Brazilian children and adolescents aged 9-13 years. Intakes were correlated with biomarkers in plasma and red blood cells. Correlations between nutrients and their biomarkers were presented for animal protein, myristic acid (C14:0), EPA, DHA, ß-carotene, folate, and vitamins B3, B5 and B6. Food groups and biomarkers were correlated as follows: fish products with EPA and DHA; milk and dairy with C14:0, pyridoxal 5'-phosphate and vitamin B12; total vegetables and dark green and orange vegetables with ß-carotene; 5-methyltetrahydrofolate with green vegetables; and flour products with para-aminobenzoylglutamic acid. This FFQ is a valid tool for ranking Brazilian children and adolescents according to their intake of several nutrients and food groups.


Subject(s)
Biomarkers/blood , Diet Surveys , Adolescent , Brazil , Child , Female , Folic Acid/blood , Humans , Male , Surveys and Questionnaires , Vitamins/blood , beta Carotene/blood
2.
Eur J Nutr ; 58(Suppl 2): 65-73, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31637468

ABSTRACT

BACKGROUND: A healthy diet and optimal lifestyle choices are amongst the most important actions for the prevention of cardiometabolic diseases. Despite this, it appears difficult to convince consumers to select more nutritious foods. Furthermore, the development and production of healthier foods do not always lead to economic profits for the agro-food sector. Most dietary recommendations for the general population represent a "one-size-fits-all approach" which does not necessarily ensure that everyone has adequate exposure to health-promoting constituents of foods. Indeed, we now know that individuals show a high variability in responses when exposed to specific nutrients, foods, or diets. PURPOSE: This review aims to highlight our current understanding of inter-individual variability in response to dietary bioactives, based on the integration of findings of the COST Action POSITIVe. We also evaluate opportunities for translation of scientific knowledge on inter-individual variability in response to dietary bioactives, once it becomes available, into practical applications for stakeholders, such as the agro-food industry. The potential impact from such applications will form an important impetus for the food industry to develop and market new high quality and healthy foods for specific groups of consumers in the future. This may contribute to a decrease in the burden of diet-related chronic diseases.


Subject(s)
Cardiovascular Diseases/prevention & control , Diet, Vegetarian/methods , Health Promotion/methods , Metabolic Diseases/prevention & control , Phytochemicals/administration & dosage , Humans
3.
J Proteome Res ; 16(11): 4122-4133, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28950061

ABSTRACT

Validated protein biomarkers are needed for assessing health trajectories, predicting and subclassifying disease, and optimizing diagnostic and therapeutic clinical decision-making. The sensitivity, specificity, accuracy, and precision of single or combinations of protein biomarkers may be altered by differences in physiological states limiting the ability to translate research results to clinically useful diagnostic tests. Aptamer based affinity assays were used to test whether low abundant serum proteins differed based on age, sex, and fat mass in a healthy population of 94 males and 102 females from the MECHE cohort. The findings were replicated in 217 healthy male and 377 healthy female participants in the DiOGenes consortium. Of the 1129 proteins in the panel, 141, 51, and 112 proteins (adjusted p < 0.1) were identified in the MECHE cohort and significantly replicated in DiOGenes for sexual dimorphism, age, and fat mass, respectively. Pathway analysis classified a subset of proteins from the 3 phenotypes to the complement and coagulation cascades pathways and to immune and coagulation processes. These results demonstrated that specific proteins were statistically associated with dichotomous (male vs female) and continuous phenotypes (age, fat mass), which may influence the identification and use of biomarkers of clinical utility for health diagnosis and therapeutic strategies.


Subject(s)
Phenotype , Proteomics/methods , Adipose Tissue , Age Factors , Female , Humans , Male , Sex Characteristics
5.
Nutrients ; 16(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257081

ABSTRACT

Large datasets have been used in molecular and genetic research for decades, but only a few studies have included nutrition and lifestyle factors. Our team conducted an n-of-1 intervention with 12 vitamins and five minerals in 9- to 13-year-old Brazilian children and teens with poor healthy-eating indices. A unique feature of the experimental design was the inclusion of a replication arm. Twenty-six types of data were acquired including clinical measures, whole-genome mapping, whole-exome sequencing, and proteomic and a variety of metabolomic measurements over two years. A goal of this study was to use these diverse data sets to discover previously undetected physiological effects associated with a poor diet that include a more complete micronutrient composition. We summarize the key findings of 11 reports from this study that (i) found that LDL and total cholesterol and fasting glucose decreased in the population after the intervention but with inter-individual variation; (ii) associated a polygenic risk score that predicted baseline vitamin B12 levels; (iii) identified metabotypes linking diet intake, genetic makeup, and metabolic physiology; (iv) found multiple biomarkers for nutrient and food groups; and (v) discovered metabolites and proteins that are associated with DNA damage. This summary also highlights the limitations and lessons in analyzing diverse omic data.


Subject(s)
Proteomics , Research Design , Child , Adolescent , Humans , Brazil , DNA Damage , Micronutrients
6.
Nutrients ; 15(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36678141

ABSTRACT

Nutrition affects the early stages of disease development, but the mechanisms remain poorly understood. High-throughput proteomic methods are being used to generate data and information on the effects of nutrients, foods, and diets on health and disease processes. In this report, a novel machine reading pipeline was used to identify all articles and abstracts on proteomics, diet, food, and nutrition in humans. The resulting proteomic corpus was further analyzed to produce seven clusters of "thematic" content defined as documents that have similar word content. Examples of publications from several of these clusters were then described in a similar way to a typical descriptive review.


Subject(s)
Diet , Proteomics , Humans , Proteomics/methods , Food , Nutritional Status , Nutrients
7.
Hum Mutat ; 33(11): 1513-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22753370

ABSTRACT

The Human Variome Project (http://www.humanvariomeproject.org) is an international effort aiming to systematically collect and share information on all human genetic variation. The two main pillars of this effort are gene/disease-specific databases and a network of Human Variome Project Country Nodes. The latter are nationwide efforts to document the genomic variation reported within a specific population. The development and successful operation of the Human Variome Project Country Nodes are of utmost importance to the success of Human Variome Project's aims and goals because they not only allow the genetic burden of disease to be quantified in different countries, but also provide diagnosticians and researchers access to an up-to-date resource that will assist them in their daily clinical practice and biomedical research, respectively. Here, we report the discussions and recommendations that resulted from the inaugural meeting of the International Confederation of Countries Advisory Council, held on 12th December 2011, during the 2011 Human Variome Project Beijing Meeting. We discuss the steps necessary to maximize the impact of the Country Node effort for developing regional and country-specific clinical genetics resources and summarize a few well-coordinated genetic data collection initiatives that would serve as paradigms for similar projects.


Subject(s)
Genetic Variation , Genome, Human , Human Genome Project , Guidelines as Topic , Human Genome Project/economics , Human Genome Project/ethics , Human Genome Project/legislation & jurisprudence , Humans , International Cooperation , Registries , Software
8.
Int J Vitam Nutr Res ; 82(5): 333-41, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23798052

ABSTRACT

The progress in and success of biomedical research over the past century was built on the foundation outlined in R.A. Fisher's The Design of Experiments (1935), which described the theory and methodological approach to designing research studies. A key tenet of Fisher's treatise, widely adopted by the research community, is randomization, the process of assigning individuals to random groups or treatments. Comparing outcomes or responses between these groups yields "risk factors" called population attributable risks (PAR), which are statistical estimates of the percentage reduction in disease if the risk were avoided or in the case of genetic associations, if the gene variant were not present in the population .High throughput metabolomics, proteomic and genomic technologies provide 21st century data that humans cannot be randomized into groups: individuals are genetically and biochemically distinct. Gene­environment interactions caused by unique dietary and lifestyle factors contribute to heterogeneity in physiologies observed in human studies. The risk factors determined for populations (i.e., PAR) cannot be applied to the individual. Developing individual risk or benefit factors in light of the genetic diversity of human populations, the complexity of foods, culture and lifestyle, and the variety of metabolic processes that lead to health or disease are significant challenges for personalizing dietary advice for healthy or medical treatments for individuals with chronic disease.


Subject(s)
Biomedical Research , Nutrigenomics , Research Design/trends , Systems Biology , Diet , Gene-Environment Interaction , Genetic Variation , Humans , Life Style , Metabolomics , Nutritional Physiological Phenomena/genetics , Nutritional Physiological Phenomena/physiology , Proteomics , Risk Factors
9.
Hum Mutat ; 32(5): 501-6, 2011 May.
Article in English | MEDLINE | ID: mdl-21305654

ABSTRACT

Genetic diseases are a pressing global health problem that requires comprehensive access to basic clinical and genetic data to counter. The creation of regional and international databases that can be easily accessed by clinicians and diagnostic labs will greatly improve our ability to accurately diagnose and treat patients with genetic disorders. The Human Variome Project is currently working in conjunction with human genetics societies to achieve this by establishing systems to collect every mutation reported by a diagnostic laboratory, clinic, or research laboratory in a country and store these within a national repository, or HVP Country Node. Nodes have already been initiated in Australia, Belgium, China, Egypt, Malaysia, and Kuwait. Each is examining how to systematically collect and share genetic, clinical, and biochemical information in a country-specific manner that is sensitive to local ethical and cultural issues. This article gathers cases of genetic data collection within countries and takes recommendations from the global community to develop a procedure for countries wishing to establish their own collection system as part of the Human Variome Project. We hope this may lead to standard practices to facilitate global collection of data and allow efficient use in clinical practice, research and therapy.


Subject(s)
Data Collection/methods , Databases, Genetic , Genetic Variation , Genome, Human/genetics , Humans , Internationality , Mutation , National Health Programs
10.
Drug Metab Dispos ; 39(3): 528-38, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21149542

ABSTRACT

In addition to primary human hepatocytes, hepatoma cell lines, and transfected nonhepatoma, hepatic cell lines have been used for pharmacological and toxicological studies. However, a systematic evaluation and a general report of the gene expression spectra of drug-metabolizing enzymes and transporters (DMETs) in these in vitro systems are not currently available. To fill this information gap and to provide references for future studies, we systematically characterized the basal gene expression profiles of 251 drug-metabolizing enzymes in untreated primary human hepatocytes from six donors, four commonly used hepatoma cell lines (HepG2, Huh7, SK-Hep-1, and Hep3B), and one transfected human liver epithelial cell line. A large variation in DMET expression spectra was observed between hepatic cell lines and primary hepatocytes, with the complete absence or much lower abundance of certain DMETs in hepatic cell lines. Furthermore, the basal DMET expression spectra of five hepatic cell lines are summarized, providing references for researchers to choose carefully appropriate in vitro models for their studies of drug metabolism and toxicity, especially for studies with drugs in which toxicities are mediated through the formation of reactive metabolites.


Subject(s)
Gene Expression Regulation, Enzymologic , Hepatocytes/enzymology , Pharmacokinetics , Algorithms , Biological Transport , Cell Line , Cell Line, Tumor , Cells, Cultured , Drug Evaluation, Preclinical/methods , Gene Expression Profiling , Hepatocytes/metabolism , Humans , Inactivation, Metabolic , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Oligonucleotide Array Sequence Analysis , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
11.
Sci Rep ; 11(1): 12215, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108562

ABSTRACT

Identifying dietary patterns that contribute to zinc (Zn) and fatty acids intake and their biomarkers that may have an impact on health of males and females. The present study was designed to (a) extract dietary patterns with foods that explain the variation of Zn and PUFAs intake in adult men and women; and (b) evaluate the association between the extracted dietary patterns with circulating levels of serum dihomo-γ-linolenic fatty acid (DGLA) or serum linoleic/dihomo-γ-linolenic (LA/DGLA) ratio in males and females. We used reduced rank regression (RRR) to extract the dietary patterns separated by sex in the NHANES 2011-2012 data. A dietary pattern with foods rich in Zn (1st quintile = 8.67 mg/day; 5th quintile = 11.11 mg/day) and poor in PUFAs (5th quintile = 15.28 g/day; 1st quintile = 18.03 g/day) was found in females (S-FDP2) and the same pattern, with foods poor in PUFAs (5th quintile = 17.6 g/day; 1st quintile = 20.7 g/day) and rich in Zn (1st quintile = 10.4 mg/day; 5th quintile = 12.9 mg/day) (S-MDP2), was found in males. The dietary patterns with foods rich in Zn and poor in PUFAs were negatively associated with serum LA/DGLA ratio. This is the first study to associate the LA/DGLA ratio with Zn and PUFAs related dietary patterns in males and females.


Subject(s)
8,11,14-Eicosatrienoic Acid/blood , Diet , Fatty Acids, Unsaturated/administration & dosage , Linoleic Acid/blood , Zinc/administration & dosage , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Nutrition Surveys , Nutritional Status , Prognosis , Retrospective Studies
12.
Sci Rep ; 11(1): 11992, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099811

ABSTRACT

Polymorphisms in genes related to the metabolism of vitamin B12 haven't been examined in a Brazilian population. To (a) determine the correlation between the local genetic ancestry components and vitamin B12 levels using ninety B12-related genes; (b) determine associations between these genes and their SNPs with vitamin B12 levels; (c) determine a polygenic risk score (PRS) using significant variants. This cross-sectional study included 168 children and adolescents, aged 9-13 years old. Total cobalamin was measured in plasma. Genotyping arrays and whole exome data were combined to yield ~ 7000 SNPs in 90 genes related to vitamin B12. The Efficient Local Ancestry Inference was used to estimate local ancestry for African (AFR), Native American, and European (EUR). The association between the genotypes and vitamin B12 levels were determined with generalized estimating equation. Vitamin B12 levels were driven by positive (EUR) and negative (AFR, AMR) correlations with genetic ancestry. A set of 36 variants were used to create a PRS that explained 42% of vitamin level variation. Vitamin B12 levels are influenced by genetic ancestry and a PRS explained almost 50% of the variation in plasma cobalamin in Brazilian children and adolescents.


Subject(s)
Vitamin B 12/blood , Vitamin B 12/metabolism , Adolescent , Age Factors , Brazil , Child , Cross-Sectional Studies , Dietary Supplements , Ethnicity , Female , Genome, Human , Genotype , Health Surveys , Humans , Male , Polymorphism, Single Nucleotide , Risk Factors
13.
Nutrients ; 13(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34444642

ABSTRACT

Fatty acids play a significant role in maintaining cellular and DNA protection and we previously found an inverse relationship between blood levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and DNA damage. The aim of this study was to explore differences in proteomic profiles, for 117 pro-inflammatory proteins, in two previously defined groups of individuals with different DNA damage and EPA and DHA levels. Healthy children and adolescents (n = 140) aged 9 to 13 years old in an urban area of Brazil were divided by k-means cluster test into two clusters of DNA damage (tail intensity) using the comet assay (cluster 1 = 5.9% ± 1.2 and cluster 2 = 13.8% ± 3.1) in our previous study. The cluster with higher DNA damage and lower levels of DHA (6.2 ± 1.6 mg/dL; 5.4 ± 1.3 mg/dL, p = 0.003) and EPA (0.6 ± 0.2 mg/dL; 0.5 ± 0.1 mg/dL, p < 0.001) presented increased expression of the proteins CDK8-CCNC, PIK3CA-PIK3R1, KYNU, and PRKCB, which are involved in pro-inflammatory pathways. Our findings support the hypothesis that low levels of n-3 long-chain PUFA may have a less protective role against DNA damage through expression of pro-inflammatory proteins, such as CDK8-CCNC, PIK3CA-PIK3R1, KYNU, and PRKCB.


Subject(s)
DNA Damage , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Fatty Acids, Omega-3/blood , Adolescent , Brazil , Child , Class I Phosphatidylinositol 3-Kinases/blood , Class Ia Phosphatidylinositol 3-Kinase/blood , Cross-Sectional Studies , Cyclin C/blood , Cyclin-Dependent Kinase 8/blood , Female , Humans , Hydrolases/blood , Inflammation/metabolism , Male , Protein Kinase C beta/blood , Proteomics
14.
BMC Bioinformatics ; 11 Suppl 6: S6, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20946617

ABSTRACT

BACKGROUND: Recent advances in high-throughput genotyping technology are paving the way for research in personalized medicine and nutrition. However, most of the genetic markers identified from association studies account for a small contribution to the total risk/benefit of the studied phenotypic trait. Testing whether the candidate genes identified by association studies are causal is critically important to the development of personalized medicine and nutrition. An efficient data mining strategy and a set of sophisticated tools are necessary to help better understand and utilize the findings from genetic association studies. DESCRIPTION: SNP (single nucleotide polymorphism) and QTL (quantitative trait locus) libraries were constructed and incorporated into ArrayTrack, with user-friendly interfaces and powerful search features. Data from several public repositories were collected in the SNP and QTL libraries and connected to other domain libraries (genes, proteins, metabolites, and pathways) in ArrayTrack. Linking the data sets within ArrayTrack allows searching of SNP and QTL data as well as their relationships to other biological molecules. The SNP library includes approximately 15 million human SNPs and their annotations, while the QTL library contains publically available QTLs identified in mouse, rat, and human. The QTL library was developed for finding the overlap between the map position of a candidate or metabolic gene and QTLs from these species. Two use cases were included to demonstrate the utility of these tools. The SNP and QTL libraries are freely available to the public through ArrayTrack at http://www.fda.gov/ArrayTrack. CONCLUSIONS: These libraries developed in ArrayTrack contain comprehensive information on SNPs and QTLs and are further cross-linked to other libraries. Connecting domain specific knowledge is a cornerstone of systems biology strategies and allows for a better understanding of the genetic and biological context of the findings from genetic association studies.


Subject(s)
Biomedical Research , Genomics/methods , Microarray Analysis/methods , Polymorphism, Single Nucleotide , Precision Medicine/methods , Quantitative Trait Loci , Animals , Databases, Genetic , Humans , Mice , Rats , Sequence Analysis, DNA
15.
Hum Mutat ; 31(12): 1374-81, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20960468

ABSTRACT

The third Human Variome Project (HVP) Meeting "Integration and Implementation" was held under UNESCO Patronage in Paris, France, at the UNESCO Headquarters May 10-14, 2010. The major aims of the HVP are the collection, curation, and distribution of all human genetic variation affecting health. The HVP has drawn together disparate groups, by country, gene of interest, and expertise, who are working for the common good with the shared goal of pushing the boundaries of the human variome and collaborating to avoid unnecessary duplication. The meeting addressed the 12 key areas that form the current framework of HVP activities: Ethics; Nomenclature and Standards; Publication, Credit and Incentives; Data Collection from Clinics; Overall Data Integration and Access-Peripheral Systems/Software; Data Collection from Laboratories; Assessment of Pathogenicity; Country Specific Collection; Translation to Healthcare and Personalized Medicine; Data Transfer, Databasing, and Curation; Overall Data Integration and Access-Central Systems; and Funding Mechanisms and Sustainability. In addition, three societies that support the goals and the mission of HVP also held their own Workshops with the view to advance disease-specific variation data collection and utilization: the International Society for Gastrointestinal Hereditary Tumours, the Micronutrient Genomics Project, and the Neurogenetics Consortium.


Subject(s)
Genetic Variation/genetics , Genome, Human/genetics , Mutation/genetics , Data Collection , Databases, Genetic/economics , Humans , Motivation , Mutation/ethics , Paris , Precision Medicine , Software , Terminology as Topic , United Nations
16.
J Nutr ; 140(12): 2104-15, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20980656

ABSTRACT

Food intake, physical activity (PA), and genetic makeup each affect health and each factor influences the impact of the other 2 factors. Nutrigenomics describes interactions between genes and environment. Knowledge about the interplay between environment and genetics would be improved if experimental designs included measures of nutrient intake and PA. Lack of familiarity about how to analyze environmental variables and ease of access to tools and measurement instruments are 2 deterrents to these combined studies. This article describes the state of the art for measuring food intake and PA to encourage researchers to make their tools better known and more available to workers in other fields. Information presented was discussed during a workshop on this topic sponsored by the USDA, NIH, and FDA in the spring of 2009.


Subject(s)
Exercise , Internet , Nutritional Status , Software , Humans , Precision Medicine
17.
Clin Nutr ; 39(7): 2211-2219, 2020 07.
Article in English | MEDLINE | ID: mdl-31677804

ABSTRACT

BACKGROUND: Micronutrient supplementation has been extensively explored as a strategy to improve health and reduce risk of chronic diseases. Fat-soluble vitamins like A and E with their antioxidant properties and mechanistic interactions with lipoproteins, have potentially a key impact on lipid metabolism and lipidemia. OBJECTIVE: The impact of micronutrients on lipid metabolism requires further investigation including characterization of plasma lipidome following supplementation and any cause-effect on circulating lipids. DESIGN: In this study, we elucidate the effect and associations of a multi-micronutrient intervention in Brazilian children and teens with lipoprotein alterations and lipid metabolism. RESULTS: Our analysis suggests a combination of short and long-term impact of supplementation on lipid metabolism, potentially mediated primarily by α-tocopherol (vitamin E) and retinol (vitamin A). Among the lipid classes, levels of phospholipids, lysophospholipids, and cholesterol esters were impacted the most along with differential incorporation of stearic, palmitic, oleic and arachidonic acids. Integrated analysis with proteomic data suggested potential links to supplementation-mediated alterations in protein levels of phospholipases and pyruvate dehydrogenase kinase 1 (PDK1). CONCLUSIONS: Associations between the observed differences in lipidemia, total triglyceride, and VLDL-cholesterol levels suggest that micronutrients may play a role in reducing these risk factors for cardiovascular disease in children. This would require further investigation.


Subject(s)
Dietary Supplements , Hyperlipidemias/drug therapy , Lipids/blood , Micronutrients/administration & dosage , Adolescent , Age Factors , Biomarkers/blood , Brazil , Child , Cholesterol, VLDL/blood , Dietary Supplements/adverse effects , Female , Humans , Hyperlipidemias/blood , Hyperlipidemias/diagnosis , Lipidomics , Male , Micronutrients/adverse effects , Proteomics , Time Factors , Treatment Outcome , Triglycerides/blood , Vitamin A/administration & dosage , alpha-Tocopherol/administration & dosage
18.
Genes Nutr ; 15(1): 21, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243154

ABSTRACT

BACKGROUND: Increased adipogenesis and altered adipocyte function contribute to the development of obesity and associated comorbidities. Fructose modified adipocyte metabolism compared to glucose, but the regulatory mechanisms and consequences for obesity are unknown. Genome-wide methylation and global transcriptomics in SGBS pre-adipocytes exposed to 0, 2.5, 5, and 10 mM fructose, added to a 5-mM glucose-containing medium, were analyzed at 0, 24, 48, 96, 192, and 384 h following the induction of adipogenesis. RESULTS: Time-dependent changes in DNA methylation compared to baseline (0 h) occurred during the final maturation of adipocytes, between 192 and 384 h. Larger percentages (0.1% at 192 h, 3.2% at 384 h) of differentially methylated regions (DMRs) were found in adipocytes differentiated in the glucose-containing control media compared to adipocytes differentiated in fructose-supplemented media (0.0006% for 10 mM, 0.001% for 5 mM, and 0.005% for 2.5 mM at 384 h). A total of 1437 DMRs were identified in 5237 differentially expressed genes at 384 h post-induction in glucose-containing (5 mM) control media. The majority of them inversely correlated with the gene expression, but 666 regions were positively correlated to the gene expression. CONCLUSIONS: Our studies demonstrate that DNA methylation regulates or marks the transformation of morphologically differentiating adipocytes (seen at 192 h), to the more mature and metabolically robust adipocytes (as seen at 384 h) in a genome-wide manner. Lower (2.5 mM) concentrations of fructose have the most robust effects on methylation compared to higher concentrations (5 and 10 mM), suggesting that fructose may be playing a signaling/regulatory role at lower concentrations of fructose and as a substrate at higher concentrations.

19.
J Nutr Sci Vitaminol (Tokyo) ; 66(6): 515-525, 2020.
Article in English | MEDLINE | ID: mdl-33390393

ABSTRACT

Certain B-vitamins and vitamin A may be involved in inflammatory pathways associated with homocysteine and omega-3 fatty acids. The aims of this study were (i) to determine whether different metabolic profiles of B-vitamins and vitamin A in Brazilian children and adolescents were positively or negatively related to homocysteine and omega-3 fatty acids using k-means clustering analysis, (ii) compare nutrient intakes and metabolites between the different metabolic profiles, (iii) evaluate if the statistically significant metabolites found between the metabolic groups, can predict the variation of leukotriene A4 hydrolase (LTA4H) levels, a biomarker of low-grade inflammation, in the total studied population. This cross-sectional study included 124 children and adolescents, aged 9-13 y old. Dietary intake was assessed by the food frequency questionnaire and 24-hour recall. Biomarkers for vitamins B2, B6, B12, folate and vitamin A were measured in plasma. Omega-3 fatty acids and homocysteine were measured in red blood cells (RBC). Two different metabolic profiles were found. Thirty of these individuals had overall average higher riboflavin, pyridoxal, and vitamin B12 plasma levels (metabolic group 1) compared to 94 individuals (group 2). Group 2 had lower dietary intake of vitamin B2, vitamin A, and vitamin B12 and higher RBC levels of homocysteine. EPA and DHA erythrocyte levels were not different between metabolic groups. Multiple linear regression analyses showed that blood cobalamin, riboflavin, pyridoxal and homocysteine combined, explained 9.0% of LTA4H levels variation in the total studied population. The metabolic group that had low plasma levels of riboflavin, pyridoxal, and cobalamin also had a lower dietary intake of B-vitamin and higher RBC homocysteine. The combined levels of the riboflavin, pyridoxal, cobalamin and homocysteine biomarkers can predict the variation of LTA4H in the total population studied, but it is not clear how this regulation occurs.


Subject(s)
Vitamin B 12 , Vitamin B Complex , Adolescent , Biomarkers , Child , Cross-Sectional Studies , Folic Acid , Homocysteine , Humans
20.
Food Funct ; 11(6): 5115-5121, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32432238

ABSTRACT

This study aimed to investigate the association between DNA damage and blood levels of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), retinol, beta-carotene and riboflavin in Brazilian children and adolescents. Subjects (n = 140) were healthy boys and girls aged 9 to 13 years in Ribeirão Preto (SP, Brazil). Data collection included anthropometry, assessment of energy intake and blood sampling. DNA damage was evaluated by single-cell gel electrophoresis (comet assay). Principal component analysis (PCA) was used to verify associations between blood concentrations of vitamins, polyunsaturated fatty acids and DNA damage. Multiple regression analyses, k-means cluster, and analysis of covariance (ANCOVA), adjusted for confounding variables such as age, sex, energy intake, body mass index and total cholesterol (when needed), were applied to confirm the associations. PCA explained 69.4% of the inverse relationships between DNA damage and blood levels of DHA, EPA, retinol, and beta-carotene. Results were confirmed by ANCOVA and multiple regression analyses for DHA and EPA. In conclusion, omega-3-fatty acids were inversely associated with DNA damage in Brazilian children and adolescents and may be a protective factor against the development of future diseases.


Subject(s)
DNA Damage , Docosahexaenoic Acids/blood , Eicosapentaenoic Acid/blood , Adolescent , Body Mass Index , Brazil , Child , Cross-Sectional Studies , Energy Intake , Fatty Acids, Unsaturated/blood , Female , Humans , Male , Riboflavin/blood , Vitamin A/blood , Vitamins/blood , beta Carotene/blood
SELECTION OF CITATIONS
SEARCH DETAIL