Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemphyschem ; 24(3): e202200617, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36169153

ABSTRACT

Kohn-Sham density functional theory and plane wave basis set based ab initio molecular dynamics (AIMD) simulation is a powerful tool for studying complex reactions in solutions, such as electron transfer (ET) reactions involving Fe2+ /Fe3+ ions in water. In most cases, such simulations are performed using density functionals at the level of Generalized Gradient Approximation (GGA). The challenge in modelling ET reactions is the poor quality of GGA functionals in predicting properties of such open-shell systems due to the inevitable self-interaction error (SIE). While hybrid functionals can minimize SIE, standard plane-wave based AIMD at that level of theory is typically 150 times slower than GGA for systems containing ∼100 atoms. Among several approaches reported to speed-up AIMD simulations with hybrid functionals, the noise-stabilized MD (NSMD) procedure, together with the use of localized orbitals to compute the required exchange integrals, is an attractive option. In this work, we demonstrate the application of the NSMD approach for studying the Fe2+ /Fe3+ redox reaction in water. It is shown here that long AIMD trajectories at the level of hybrid density functionals can be obtained using this approach. Redox properties of the aqueous Fe2+ /Fe3+ system computed from these simulations are compared with the available experimental data for validation.

2.
J Comput Chem ; 43(9): 588-597, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35147988

ABSTRACT

Density functionals at the level of the generalized gradient approximation (GGA) and a plane-wave basis set are widely used today to perform ab initio molecular dynamics (AIMD) simulations. Going up in the ladder of accuracy of density functionals from GGA (second rung) to hybrid density functionals (fourth rung) is much desired pertaining to the accuracy of the latter in describing structure, dynamics, and energetics of molecular and condensed matter systems. On the other hand, hybrid density functional based AIMD simulations are about two orders of magnitude slower than GGA based AIMD for systems containing ~100 atoms using ~100 compute cores. Two methods, namely MTACE and s-MTACE, based on a multiple time step integrator and adaptively compressed exchange operator formalism are able to provide a speed-up of about 7-9 in performing hybrid density functional based AIMD. In this work, we report an implementation of these methods using a task-group based parallelization within the CPMD program package, with the intention to take advantage of the large number of compute cores available on modern high-performance computing platforms. We present here the boost in performance achieved through this algorithm. This work also identifies the computational bottleneck in the s-MTACE method and proposes a way to overcome it.

3.
J Chem Theory Comput ; 19(22): 8351-8364, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37933121

ABSTRACT

Ab initio molecular dynamics (AIMD) based on density functional theory (DFT) has become a workhorse for studying the structure, dynamics, and reactions in condensed matter systems. Currently, AIMD simulations are primarily carried out at the level of generalized gradient approximation (GGA), which is at the second rung of DFT functionals in terms of accuracy. Hybrid DFT functionals, which form the fourth rung in the accuracy ladder, are not commonly used in AIMD simulations as the computational cost involved is 100 times or higher. To facilitate AIMD simulations with hybrid functionals, we propose here an approach using multiple time stepping with adaptively compressed exchange operator and resonance-free thermostat, that could speed up the calculations by ∼30 times or more for systems with a few hundred of atoms. We demonstrate that by achieving this significant speed up and making the compute time of hybrid functional-based AIMD simulations at par with that of GGA functionals, we are able to study several complex condensed matter systems and model chemical reactions in solution with hybrid functionals that were earlier unthinkable to be performed.

SELECTION OF CITATIONS
SEARCH DETAIL