Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Proc Natl Acad Sci U S A ; 121(29): e2406337121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38985759

ABSTRACT

Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of "interior tailorability," thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm-2) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this "bottom-up" synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.

2.
Proc Natl Acad Sci U S A ; 119(32): e2203483119, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35925890

ABSTRACT

Many biopolymers are highly charged, and as in the case of many polymer mixtures, they tend to phase separate as a natural consequence of chain connectivity and an associated relatively low entropy of polymer mixing. Recently, it has become appreciated that the phase-separated structures formed by such polyelectrolyte blends, called "complex coacervates," underlie numerous biological structures and processes essential to living systems, and there has been intense interest in understanding the unique physical features of this type of phase-separation process. In the present work, we are particularly concerned with the field responsiveness of stabilized coacervate droplets formed after the phase separation of polyelectrolyte blend solution and then exposed to deionized water, making the droplet interfacial layer acquire a viscoelastic character that strongly stabilizes it against coalescence. We show that we can precisely control the positions of individual droplets and arrays of them with relatively low-voltage electric fields (on the order of 10 V/cm) and that the imposition of an oscillatory field gives rise to chain formation with coarsening of these chains into long fibers. Such a phase-separation-like process is generally observed in electrorheological fluids of solid colloidal particles subjected to much larger field strengths. The key to these coacervates' electrorheological properties is the altered interfacial viscoelastic properties when the droplets are introduced into deionized water and the associated high polarizability of the droplets, similar to the properties of many living cells. Since many different molecular payloads can be incorporated into these stable droplets, we anticipate many applications.

3.
Molecules ; 28(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298920

ABSTRACT

Structurally well-defined polymer-grafted nanoparticle hybrids are highly sought after for a variety of applications, such as antifouling, mechanical reinforcement, separations, and sensing. Herein, we report the synthesis of poly(methyl methacrylate) grafted- and poly(styrene) grafted-BaTiO3 nanoparticles using activator regeneration via electron transfer (ARGET ATRP) with a sacrificial initiator, atom transfer radical polymerization (normal ATRP), and ATRP with sacrificial initiator, to understand the role of the polymerization procedure in influencing the structure of nanoparticle hybrids. Irrespective of the polymerization procedure adopted for the synthesis of nanoparticle hybrids, we noticed PS grafted on the nanoparticles showed moderation in molecular weight and graft density (ranging from 30,400 to 83,900 g/mol and 0.122 to 0.067 chain/nm2) compared to PMMA-grafted nanoparticles (ranging from 44,620 to 230,000 g/mol and 0.071 to 0.015 chain/nm2). Reducing the polymerization time during ATRP has a significant impact on the molecular weight of polymer brushes grafted on the nanoparticles. PMMA-grafted nanoparticles synthesized using ATRP had lower graft density and considerably higher molecular weight compared to PS-grafted nanoparticles. However, the addition of a sacrificial initiator during ATRP resulted in moderation of the molecular weight and graft density of PMMA-grafted nanoparticles. The use of a sacrificial initiator along with ARGET offered the best control in achieving lower molecular weight and narrow dispersity for both PS (37,870 g/mol and PDI of 1.259) and PMMA (44,620 g/mol and PDI of 1.263) nanoparticle hybrid systems.


Subject(s)
Nanoparticles , Polymers , Polymers/chemistry , Polymethyl Methacrylate/chemistry , Molecular Weight , Nanoparticles/chemistry
4.
Small ; 18(36): e2107099, 2022 09.
Article in English | MEDLINE | ID: mdl-36073141

ABSTRACT

The need to develop wearable devices for personal health monitoring, diagnostics, and therapy has inspired the production of innovative on-demand, customizable technologies. Several of these technologies enable printing of raw electronic materials directly onto biological organs and tissues. However, few of them have been thoroughly investigated for biocompatibility of the raw materials on the cellular, tissue, and organ levels or with different cell types. In addition, highly accurate multiday in vivo monitoring using such on-demand, in situ fabricated devices has yet to be done. Presented herein is the first fully biocompatible, on-skin fabricated electronics for multiple cell types and tissues that can capture electrophysiological signals with high fidelity. While also demonstrating improved mechanical and electrical properties, the drawn-on-skin ink retains its properties under various writing conditions, which minimizes the variation in electrical performance. Furthermore, the drawn-on-skin ink shows excellent biocompatibility with cardiomyocytes, neurons, mice skin tissue, and human skin. The high signal-to-noise ratios of the electrophysiological signals recorded with the DoS sensor over multiple days demonstrate its potential for personalized, long-term, and accurate electrophysiological health monitoring.


Subject(s)
Ink , Wearable Electronic Devices , Animals , Electronics , Electrophysiology , Humans , Mice , Skin
5.
Nano Lett ; 21(3): 1274-1281, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33523666

ABSTRACT

Surface-textured polymer nanocomposite (PNC) films are utilized in many device applications, and therefore understanding the relaxation behavior of such films is important. By extending an in situ wrinkle relaxation method, we observed that the thermal stability of wrinkled PNC films, both above and below the glass transition temperature (Tg), is proportional to a film's nanoparticle (polymer grafted and bare) concentration, with a slope that changes sign at a compensation temperature (Tcomp) that is determined to be in the vicinity of the film's Tg. This provides unambiguous confirmation of entropy-enthalpy compensation (EEC) as a general feature of PNC films, implying that the stability of PNC films changes from being enhanced to becoming diminished by simply passing through this characteristic temperature, a phenomenon having evident practical ramifications. We suggest EEC will also arise in films where residual stresses are associated with the film fabrication process, which is relevant to nanotech device applications.

6.
Nanotechnology ; 32(14): 142004, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33260170

ABSTRACT

Polymer nanocomposites (PNC) have attracted enormous scientific and technological interest due to their applications in energy storage, electronics, biosensing, drug delivery, cosmetics and packaging industry. Nanomaterials (platelet, fibers, spheroids, whiskers, rods) dispersed in different types of polymer matrices constitute such PNC. The degree of dispersion of the inorganic nanomaterials in the polymer matrix, as well as the structured arrangement of the nanomaterials, are some of the key factors influencing the overall performance of the nanocomposite. To this end, the surface functionalization of the nanomaterials determines its state of dispersion within the polymer matrix. For energy storage and electronics, these nanomaterials are usually chosen for their dielectric properties for enhancing the performance of device applications. Although several reviews on surface modification of nanomaterials have been reported, a review on the surface functionalization of nanomaterials as it pertains to polymer dielectrics is currently lacking. This review summarizes the recent developments in the surface modification of important metal oxide dielectric nanomaterials including Silicon dioxide (SiO2), titanium dioxide (TiO2), barium titanate (BaTiO3), and aluminum oxide (Al2O3) by chemical agents such as silanes, phosphonic acids, and dopamine. We report the impact of chemical modification of the nanomaterial on the dielectric performance (dielectric constant, breakdown strength, and energy density) of the nanocomposite. Aside from bringing novice and experts up to speed in the area of polymer dielectric nanocomposites, this review will serve as an intellectual resource in the selection of appropriate chemical agents for functionalizing nanomaterials for use in specific polymer matrix so as to potentially tune the final performance of nanocomposite.

7.
Molecules ; 26(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063362

ABSTRACT

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the "grafting from" and "grafting to" approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.

8.
Soft Matter ; 16(42): 9648-9654, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-32808620

ABSTRACT

The separation of oil from water and filtration of aqueous solutions and dispersions are critical issues in the processing of waste and contaminated water treatment. Membrane-based technology has been proven as an effective method for the separation of oil from water. In this research, novel vertical nanopores membrane, via oriented cylindrical block copolymer (BCP) films, suitable for oil/water filtration has been designed, fabricated and tested. We used a ∼100 nm thick model poly(styrene-block-methymethacrylate) (PS-b-PMMA) BCP as the active top nanofiltration layer, processed using a roll-to-roll (R2R) method of cold zone annealing (CZA) to obtain vertical orientation, followed by ultraviolet (UV) irradiation selective etch of PMMA cylinders to form vertically oriented nanopores as a novel feature compared to meandering nanopores in other reported BCP systems. The cylindrical nanochannels are hydrophilic, and have a uniform pore size (∼23 nm), a narrow pore size distribution and a high nanopore density (∼420 per sq. micron). The bottom supporting layer is a conventional microporous polyethersulfone (PES) membrane. The created asymmetric membrane is demonstrated to be effective for oil/water extraction with a modestly high throughput rate comparable to other RO/NF membranes. The molecular weight dependent filtration of a water soluble polymer, PEO, demonstrates the broader applications of such membranes.

9.
Proc Natl Acad Sci U S A ; 114(10): 2462-2467, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28228522

ABSTRACT

The modification of nanoparticles with polymer ligands has emerged as a versatile approach to control the interactions and organization of nanoparticles in polymer nanocomposite materials. Besides their technological significance, polymer-grafted nanoparticle (PGNP) dispersions have attracted interest as model systems to understand the role of entropy as a driving force for microstructure formation. For instance, densely and sparsely grafted nanoparticles show distinct dispersion and assembly behaviors within polymer matrices due to the entropy variation associated with conformational changes in brush and matrix chains. Here we demonstrate how this entropy change can be harnessed to drive PGNPs into spatially organized domain structures on submicrometer scale within topographically patterned thin films. This selective segregation of PGNPs is induced by the conformational entropy penalty arising from local perturbations of grafted and matrix chains under confinement. The efficiency of this particle segregation process within patterned mesa-trench films can be tuned by changing the relative entropic confinement effects on grafted and matrix chains. The versatility of topographic patterning, combined with the compatibility with a wide range of nanoparticle and polymeric materials, renders SCPINS (soft-confinement pattern-induced nanoparticle segregation) an attractive method for fabricating nanostructured hybrid films with potential applications in nanomaterial-based technologies.

10.
Nano Lett ; 18(12): 7441-7447, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30398875

ABSTRACT

Polymer films provide a versatile platform in which complex functional relief patterns can be thermally imprinted with a resolution down to few nanometers. However, a practical limitation of this method is the tendency for the imprinted patterns to relax ("slump"), leading to loss of pattern fidelity over time. While increasing temperature above glass transition temperature ( Tg) accelerates the slumping kinetics of neat films, we find that the addition of polymer-grafted nanoparticles (PGNP) can greatly enhance the thermal stability of these patterns. Specifically, increasing the concentration of poly(methyl methacrylate) (PMMA) grafted titanium dioxide (TiO2) nanoparticles in the composite films slows down film relaxation dynamics, leading to enhanced pattern stability for the temperature range that we investigated. Interestingly, slumping relaxation time is found to obey an entropy-enthalpy compensation (EEC) relationship with varying PGNP concentration, similar to recently observed relaxation of strain-induced wrinkling in glassy polymer films having variable film thickness. The compensation temperature,  Tcomp was found to be in the vicintity of the bulk  Tg of PMMA. Our results suggest a common origin of EEC relaxation in patterned polymer thin films and  nanocomposites.

11.
Nano Lett ; 17(12): 7814-7823, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29136475

ABSTRACT

Template-free directed self-assembly of ultrathin (approximately tens of nanometers) lamellar block copolymer (l-BCP) films into vertically oriented nanodomains holds much technological relevance for the fabrication of next-generation devices from nanoelectronics to nanomembranes due to domain interconnectivity and high interfacial area. We report for the first time the formation of full through-thickness vertically oriented lamellar domains in 100 nm thin polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films on quartz substrate, achieved without any PMMA-block wetting layer formation, quartz surface modification (templating chemical, topographical) or system modifications (added surfactant, top-layer coat). Vertical ordering of l-BCPs results from the coupling between a molecular and a macroscopic phenomenon. A molecular relaxation induced vertical l-BCP ordering occurs under a transient macroscopic vertical strain field, imposed by a high film thermal expansion rate under sharp thermal gradient cold zone annealing (CZA-S). The parametric window for vertical ordering is quantified via a coupling constant, C (= v∇T), whose range is established in terms of a thermal gradient (∇T) above a threshold value, and an optimal dynamic sample sweep rate (v ∼ d/τ), where τ is the l-BCP's longest molecular relaxation time and d is the Tg,heat - Tg,cool distance. Real-time CZA-S morphology evolution of vertically oriented l-BCP tracked along ∇T using in situ grazing incidence small angle X-ray scattering (GISAXS) exhibited an initial formation phase of vertical lamellae, a polygrain structure formation stage, and a grain coarsening phase to fully vertically ordered l-BCP morphology development. CZA-S is a roll-to-roll manufacturing method, rendering this template-free through-thickness vertical ordering of l-BCP films highly attractive and industrially relevant.

12.
Soft Matter ; 13(27): 4709-4719, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28613314

ABSTRACT

Substrate pattern guided self-organization of ultrathin and confined polymeric films on a topographically patterned substrate is a useful approach for obtaining ordered meso and nano structures over large areas, particularly if the ordering is achieved during film preparation itself, eliminating any post-processing such as thermal or solvent vapor annealing. By casting a dilute solution of two immiscible polymers, polystyrene (PS) and polymethylmethacrylate (PMMA), from a common solvent (toluene) on a topographically patterned substrate with a grating geometry, we show the formation of self-organized meso patterns with various degrees of ordering. The morphology depends on both the concentration of the dispensed solution (Cn) and the blend composition (RB). Depending on the extent of dewetting during spin coating, the final morphologies can be classified into three distinct categories. At a very low Cn the solution dewets fully, resulting in isolated polymer droplets aligned along substrate grooves (Type 1). Type 2 structures comprising isolated threads with aligned phase separated domains along each substrate groove are observed at intermediate Cn. A continuous film (Type 3) is obtained above a critical concentration (Cn*) that depends on RB. While the extent of ordering of the domains gradually diminishes with an increase in film thickness for Type 3 patterns, the size of the domains remains much smaller than that on a flat substrate, resulting in significant downsizing of the features due to the lateral confinement imposed on the phase separation process by the topographic patterns. Finally, we show that some of these structures exhibit excellent broadband anti-reflection (AR) properties.

13.
Macromol Rapid Commun ; 38(12)2017 Jun.
Article in English | MEDLINE | ID: mdl-28383814

ABSTRACT

Diffuse reflectors have various applications in devices ranging from liquid crystal displays to light emitting diodes, to coatings. Herein, specular and diffuse reflectance from controlled phase separation of polymer blend films, a well-known self-organization process, are studied. Temperature-induced spinodal phase separation of polymer blend films in which one of the components is selectively extracted is shown to exhibit enhanced surface roughness as compared to unextracted films, leading to a notable increase of diffuse reflectance. Diffuse reflectance of UV-visible light from such selectively leached phase-separated blend films is determined by a synergy of varying lateral scale of phase separation (≈200 nm to 1 µm) and blend film surface roughness (0-40 nm). These critical parameters are controlled by tuning annealing time (0.5-3 h) and temperature (140, 150, 160 °C) of phase separation. Angle-resolved diffuse reflection studies show that the surface-roughened polymer films exhibit diffuse reflectance up to 40° from normal incident light in contrast to optically uniform as-cast films that exhibit largely specular reflectance. Furthermore, the intensity of the diffusively reflected light can be enhanced (300-700 nm) or reduced (220-300 nm) significantly by coating the leached phase-separated films with a thin silver over layer.


Subject(s)
Light , Polymers/chemistry , Silver , Temperature
14.
Faraday Discuss ; 186: 31-43, 2016.
Article in English | MEDLINE | ID: mdl-26814827

ABSTRACT

Application of shear stress has been shown to unidirectionally orient the microstructures of block copolymers and polymer blends. In the present work, we study the phase separation of a novel nanoparticle (NP)-polymer blend thin film system under shear using a soft-shear dynamic zone annealing (DZA-SS) method. The nanoparticles are densely grafted with polymer chains of chemically dissimilar composition from the matrix polymer, which induces phase separation upon thermal annealing into concentrated nanoparticle domains. We systematically examine the influence of DZA-SS translation speed and thus the effective shear rate on nanoparticle domain elongation and compare this with the counterpart binary polymer blend behavior. Unidirectionally aligned nanoparticle string-domains are fabricated in the presence of soft-shear in confined thin film geometry. We expect this DZA-SS method to be applicable to various NP-polymer blends towards unidirectionally aligned nanoparticle structures, which are important to functional nanoparticle structure fabrication.


Subject(s)
Gold/chemistry , Nanoparticles/chemistry , Polymethyl Methacrylate/chemistry , Polystyrenes/chemistry , Nanoparticles/ultrastructure , Phase Transition , Stress, Mechanical , Sulfhydryl Compounds/chemistry , Surface Properties
15.
Macromol Rapid Commun ; 37(23): 1932-1938, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27723158

ABSTRACT

Surface memory effects for micropattern and nanopattern are demonstrated for shape memory compounds composed of mixtures of the zinc salt of a sulfonated poly(ethylene-co-propylene-co-ethylidene norbornene) ionomer and three different low molar mass fatty acids (FAs): lauric acid (LA), stearic acid (SA), and zinc stearate (ZnSt). This work shows the ability to tune the surface pattern switching temperature (Tc ) by simply varying the FA melting point. The melting point of the FA in the ionomer compound is depressed from that of the pure FA due to strong dipolar interactions between the ionomer and the FAs. Surface pattern memory and recovery are shown for compounds with 20 wt% LA, SA, or ZnSt, where Tc = 50, 80, and 100 °C, respectively. Recovery efficiencies for micropatterns are better than 92% for all three compounds and 73% for a nanopattern for the ionomer/ZnSt compound.


Subject(s)
Fatty Acids/chemistry , Molecular Imprinting , Polymers/chemistry , Macromolecular Substances/chemistry , Particle Size , Surface Properties , Temperature
16.
Soft Matter ; 11(25): 5154-67, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26053660

ABSTRACT

Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such 'neutral' substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmed using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. Our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.


Subject(s)
Nanoparticles/chemistry , Phase Transition , Polymers/chemistry , Transition Temperature , Heating , Molecular Dynamics Simulation , Nanoparticles/ultrastructure , Neutron Diffraction , Scattering, Small Angle , Surface Properties
17.
Soft Matter ; 10(20): 3656-66, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24676041

ABSTRACT

We examine the effect of a moving in-plane temperature gradient on the ordering of cylinder-forming block-copolymers (BCP) in films containing immobilized nanoparticles that span the film thickness. In a previous paper, we reported the effect of static step oven-annealing of these films above the glass transition temperature Tg for a long period before ordering the BCP film at a much higher temperature. In the dynamic film annealing method of the present work, termed cold zone annealing (CZA), the material is continuously raised to a temperature somewhat above the glass transition temperature and then well above it, with a control of the heating time and thermal gradient. Oven annealing before ordering has been found to relieve residual stresses in the film associated with large thermal expansion of the film upon heating, eliminating the large scale target patterns induced by stresses effects associated with residual solvent and thermal expansion. By comparison, CZA naturally suppresses undesirable target patterning with enhanced ordering kinetics created through this thermal history.


Subject(s)
Methacrylates/chemistry , Nanoparticles/chemistry , Nanostructures/chemistry , Polystyrenes/chemistry , Cold Temperature , Microscopy, Atomic Force , Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Surface Properties , Transition Temperature
18.
ACS Environ Au ; 4(2): 69-79, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38525017

ABSTRACT

Membrane-based water purification is poised to play an important role in tackling the potable water crisis for safe and clean water access for the general population. Several studies have focused on near two-dimensional membranes for this purpose, which is based on an ion rejection technique. However, membrane swelling in these materials has emerged as a significant challenge because it leads to the loss of function. Herein, we report a self-cross-linked MXene-intercalated graphene oxide (GO) membrane that retains ion and dye rejection properties because the physical cross-linking interaction between Ti-O-Ti and neighboring nanosheets effectively suppresses the swelling of the membrane. In addition to the associative Ti-O-Ti bonds, C-O-C, O=C-O, and C-OH bonds are also formed, which are important for inhibiting the swelling of the membrane. To ensure the longevity of these membranes in a service context, they were subjected to heat pressurization and subsequent thermal annealing. The membrane subjected to this novel processing history exhibits minimal swelling upon immersion in solutions and retains function, rejecting salt and dyes over a wide range of salt and dye concentrations. Furthermore, these membranes successfully rejected dye and salt over a period of 72 h without a degradation of function, suggesting that these membranes have the requisite durability for water filtration applications.

19.
ACS Appl Mater Interfaces ; 16(12): 15569-15585, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38483307

ABSTRACT

A variety of structures encountered in nature only arise in materials under highly nonequilibrium conditions, suggesting to us that the scope for creating new functional block copolymer (BCP) structures might be significantly enlarged by embracing complex processing histories that allow for the fabrication of structures quite unlike those created under "near-equilibrium" conditions. The present work examines the creation of polymer film structures in which highly nonequilibrium processing conditions allow for the creation of entirely new types of transient BCP morphologies achieved by transitioning between different ordered states. Most previous studies of BCP materials have emphasized ordering them from their disordered state obtained from a solution film casting process, followed by a slow thermal annealing (TA) process at elevated temperatures normally well above room temperature. We have previously shown that achieving the equilibrium TA state can be accelerated by a direct solvent immersion annealing (DIA) preordering step that creates nascent ordered microstructures, followed by TA. In the present work, we examine the reverse nonequilibrium sequential processing in which we first thermally anneal the BCP film to different levels of partial (lamellar) order and then subject it to DIA to swell the lamellae. This sequential processing rapidly leads to a swelling-induced wrinkle pattern that initially grows with immersion time and can be quenched by solvent evaporation into its corresponding glassy state morphology. The article demonstrates the formation of wrinkling "defect" patterns in entangled BCP films by this sequential annealing that does not form under ordinary TA conditions. At long DIA times, these highly "defective" film structures evolve in favor of the equilibrium morphology of parallel lamellae observed with DIA alone. In conjunction with our previous study of sequential DIA + TA, the present TA + DIA study demonstrates that switching the order of these processing methods for block copolymer films gives the same final state morphology in the limit of long time as any one method alone, but with drastically different intermediate transient state morphologies. These transient morphologies could have many applications.

20.
ACS Appl Mater Interfaces ; 16(15): 19432-19441, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38588483

ABSTRACT

A neglected mechanism for pressure-responsive color change is demonstrated using cellulose acetate composites prepared by direct (solvent) immersion annealing (DIA), with different loadings of activated charcoal filler. Namely, compressive plastic deformation of the translucent cellulose acetate leads to a decrease in the optical path length and a concomitant increase in the visibility of the opaque contrasting filler. Composites bearing 1-7 wt% activated charcoal exhibited a linear relationship between applied pressure and resulting pressure mark brightness in the range of 12-56 MPa. Comparison of pressure mark patterns with cross-sectional scanning electron microscopy (SEM) supports the importance of the porous morphology arising from DIA for the tuning of the pressure indicator sensitivity. A simple ball drop test is used to illustrate the robustness and utility of these indicators in optical impact assessment.

SELECTION OF CITATIONS
SEARCH DETAIL