Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 131(13): 138201, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37831986

ABSTRACT

Interfacial instabilities are common phenomena observed during adhesion measurements involving viscoelastic polymers or fluids. Typical probe-tack adhesion measurements with soft adhesives are conducted with rigid probes. However, in many settings, such as for medical applications, adhesives make and break contact from soft surfaces such as skin. Here we study how detachment from soft probes alters the debonding mechanism of a model viscoelastic polymer film. We demonstrate that detachment from a soft probe suppresses Saffman-Taylor instabilities commonly encountered in adhesion. We suggest the mechanism for interface stabilization is elastohydrodynamic deformation of the probe and propose a scaling for the onset of stabilization.

2.
J Chem Phys ; 159(11)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37725659

ABSTRACT

Cutting of soft materials is a complex problem, which is still not well understood at the fundamental level, especially for soft materials. The cutting process we consider is slicing, which starts with indentation, followed by sliding of a knife on the material to be cut. Here, we describe cutting experiments on PDMS elastomers with three different moduli. Our experiments reveal typical stages of this cutting process, starting with indentation and ending at steady state cutting. The process starts with a pre-cutting phase in which the blade does not slip grossly relative to the solid to be cut, and deformation is mostly elastic. Slip of the blade initiates suddenly and is often accompanied by initiation of cutting. Cutting is relatively smooth in the next stage, which requires a continuous increase in shear force. For soft PDMS, this smooth cutting stage is followed by one in which folds or creases form on the cutting surface. The corresponding shear force response is no longer smooth as "steady" sliding occurs in a stick-slip fashion with oscillatory forces. The average shear force reaches a plateau and no longer increases with shear displacement. Experimental observations of the various cutting stages are interpreted quantitatively.

3.
Soft Matter ; 18(39): 7579-7592, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36165082

ABSTRACT

Elastomers swollen with non-polar fluids show potential as anti-adhesive materials. We study the effect of oil fraction and contact time on the adhesion between swollen spherical probes of PDMS (polydimethylsiloxane) and flat glass surfaces. The PDMS probes are swollen with pre-determined amount of 10 cSt silicone oil to span the range where the PDMS is fluid free (via solvent extraction) up to the limit where it is oil saturated. Probe tack measurements show that adhesion decreases rapidly with an increase in oil fraction. The decrease in adhesion is attributed to excess oil present at the PDMS-air interface. Contact angle measurements and optical microscopy images support this observation. Adhesion also increases with contact time for a given oil fraction. The increase in adhesion with contact time can be interpreted through different competing mechanisms that depend on the oil fraction where the dominant mechanism changes from extracted to fully swollen PDMS. For partially swollen PDMS, we observe that adhesion initially increases because of viscoelastic relaxation and at long times increases because of contact aging. In contrast, adhesion between fully swollen PDMS and glass barely increases over time and is mainly due to capillary forces. While the relaxation of PDMS in contact is well-described by a visco-poroelastic model, we do not see evidence that poroelastic relaxation of the PDMS contributes to an increase of adhesion with glass whether it is partially or fully swollen.

4.
Langmuir ; 35(15): 5151-5161, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30945867

ABSTRACT

Maintaining the underwater adhesive performance over a broad range of solution pH is challenging but necessary for many biomedical applications. Therefore, understanding how environmental conditions influence the mechanisms of bonding and debonding of pressure-sensitive adhesives (PSAs) can provide guidelines for materials design. We investigate how the presence of acrylic acid as a co-monomer impacts the adhesion of a model PSA in aqueous environments of varying pH. The adhesives under investigation are poly(2-ethylhexyl acrylate), or poly(2-EHA), and poly(2-EHA) co-polymerized with 5 wt % acrylic acid, or poly(2-EHA- co-AA). We characterize bonding and debonding (adhesion) of the adhesives using probe tack measurements with a spherical hydrophobic glass probe. We analyze the performance of the two PSAs in air and in low-ionic-strength buffered aqueous solutions of pH 3- 11. We find that the presence of the acrylic acid co-monomer increases the cohesiveness of the PSA and leads to stronger adhesion under all conditions investigated. We also observe that the presence of the acrylic acid co-monomer imparts the PSA with a strong dependence of adhesion on the solution pH. Dynamic contact angle and ζ potential measurements support the hypothesis that deprotonation of the acrylic acid groups at higher pH causes the decrease in adhesion at higher pH. Rheological measurements do not show changes in the dynamic mechanical properties of the PSAs after exposure to solutions of pH 3- 11. Our measurements allow us to isolate the effect of the solution pH on the surface and bulk properties of the PSA. In the absence of the acrylic acid co-monomer, the bulk dissipation and the surface properties of the PSA are independent of the solution's pH.

5.
Soft Matter ; 14(19): 3669-3683, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29722382

ABSTRACT

Few advanced mechanics of materials solutions have found broader and more enduring applications than Emil Winkler's beam on elastic foundation analysis, first published in 1867. Now, 150 years after its introduction, this concept continues to enjoy widespread use in its original application field of civil engineering, and has also had a profound effect on the field of adhesion mechanics, including for soft matter adhesion phenomena. A review of the model is presented with a focus on applications to adhesion science, highlighting classical works that utilize the model as well as recent usages that extend its scope. The special case of the behavior of plates on incompressible (e.g., elastomeric and viscous liquid) foundations is reviewed because of the significant relevance to the behavior of soft matter interlayers between one or more flexible adherends.

6.
ACS Appl Mater Interfaces ; 15(29): 35720-35731, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37450657

ABSTRACT

Multidentate hydrogen-bonding interactions are a promising strategy to improve underwater adhesion. Molecular and macroscale experiments have revealed an increase in underwater adhesion by incorporating multidentate H-bonding groups, but quantitatively relating the macroscale adhesive strength to cooperative hydrogen-bonding interactions remains challenging. Here, we investigate whether tridentate alcohol moieties incorporated in a model epoxy act cooperatively to enhance adhesion. We first demonstrate that incorporation of tridentate alcohol moieties leads to comparable adhesive strength with mica and aluminum in air and in water. We then show that the presence of tridentate groups leads to energy release rates that increase with an increase in crack velocity in air and in water, while materials lacking these groups do not display rate-dependent adhesion. We model the rate-dependent adhesion to estimate the activation energy of the interfacial bonds. Based on our data, we estimate the lifetime of these bonds to be between 2 ms and 6 s, corresponding to an equilibrium activation energy between 23kBT and 31kBT. These values are consistent with tridentate hydrogen bonding, suggesting that the three alcohol groups in the Tris moiety bond cooperatively form a robust adhesive interaction underwater.

7.
ACS Appl Mater Interfaces ; 9(48): 42344-42353, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29111640

ABSTRACT

We investigate the effect of an aqueous environment on the adhesion of a model acrylic pressure-sensitive adhesive (PSA) composed of 2-ethylhexyl acrylate-co-acrylic acid. We use probe-tack adhesion measurements accompanied by in situ imaging of the contact region during bonding and debonding. Within the probe-tack tests, we use both hydrophilic (piranha and plasma treatment) and hydrophobic (C18-silanization) surface treatments to investigate the contribution of the probe's surface energy on the underwater adhesion. In examining contact formation in air and underwater, we find that the presence of water when contact is made leads to different modes of PSA relaxation and contact formation. For all probes investigated, the adhesive strength between the PSA and the probe decreases when measured underwater. Additionally, we observe that the presence of water during debonding has a more pronounced effect on the adhesive strength of the PSA when probed by a hydrophilic surface as opposed to a hydrophobic surface. Using fingering wavelength analysis, we estimate the surface energy of the PSA in situ and find that when submerged in water, the PSA has a significantly higher surface energy compared to in air. Therefore, combining the observation of different modes of contact formation, the increase in surface energy, and the importance of the surface energy of the probe, we suggest that the decrease in adhesive strength in water can be explained by the hydration of the PSA and by trapped water defects between the PSA and the probe.

SELECTION OF CITATIONS
SEARCH DETAIL