Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Hum Mol Genet ; 25(5): 964-75, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26758873

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disease characterized by atrophy of muscle and loss of spinal motor neurons. SMA is caused by deletion or mutation of the survival motor neuron 1 (SMN1) gene, and the nearly identical SMN2 gene fails to generate adequate levels of functional SMN protein due to a splicing defect. Currently, several therapeutics targeted to increase SMN protein are in clinical trials. An outstanding issue in the field is whether initiating treatment in symptomatic older patients would confer a therapeutic benefit, an important consideration as the majority of patients with milder forms of SMA are diagnosed at an older age. An SMA mouse model that recapitulates the disease phenotype observed in adolescent and adult SMA patients is needed to address this important question. We demonstrate here that Δ7 mice, a model of severe SMA, treated with a suboptimal dose of an SMN2 splicing modifier show increased SMN protein, survive into adulthood and display SMA disease-relevant pathologies. Increasing the dose of the splicing modifier after the disease symptoms are apparent further mitigates SMA histopathological features in suboptimally dosed adult Δ7 mice. In addition, inhibiting myostatin using intramuscular injection of AAV1-follistatin ameliorates muscle atrophy in suboptimally dosed Δ7 mice. Taken together, we have developed a new murine model of symptomatic SMA in adolescents and adult mice that is induced pharmacologically from a more severe model and demonstrated efficacy of both SMN2 splicing modifiers and a myostatin inhibitor in mice at later disease stages.


Subject(s)
Follistatin/pharmacology , Immunologic Factors/pharmacology , Muscular Atrophy, Spinal/drug therapy , RNA Splicing/drug effects , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/agonists , Adolescent , Adult , Age of Onset , Animals , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Gene Deletion , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Mice , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/pathology , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Myostatin/antagonists & inhibitors , Myostatin/genetics , Myostatin/metabolism , Phenotype , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism
3.
Hum Mol Genet ; 25(10): 1885-1899, 2016 05 15.
Article in English | MEDLINE | ID: mdl-26931466

ABSTRACT

Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a Ć¢ĀˆĀ¼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.


Subject(s)
Isocoumarins/administration & dosage , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Piperazines/administration & dosage , Small Molecule Libraries/pharmacokinetics , Survival of Motor Neuron 2 Protein/genetics , Alternative Splicing/drug effects , Alternative Splicing/genetics , Animals , Central Nervous System/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Exons/genetics , Humans , Leukocytes, Mononuclear/drug effects , Mice , Mice, Transgenic , Muscular Atrophy, Spinal/blood , Muscular Atrophy, Spinal/pathology , RNA Splicing/drug effects , RNA Splicing/genetics , Skin/metabolism , Small Molecule Libraries/administration & dosage , Survival of Motor Neuron 2 Protein/blood
4.
Bioorg Med Chem Lett ; 27(22): 5014-5021, 2017 11 15.
Article in English | MEDLINE | ID: mdl-29032026

ABSTRACT

The continued emergence of bacteria resistant to current standard of care antibiotics presents a rapidly growing threat to public health. New chemical entities (NCEs) to treat these serious infections are desperately needed. Herein we report the discovery, synthesis, SAR and in vivo efficacy of a novel series of 4-hydroxy-2-pyridones exhibiting activity against Gram-negative pathogens. Compound 1c, derived from the N-debenzylation of 1b, preferentially inhibits bacterial DNA synthesis as determined by standard macromolecular synthesis assays. The structural features of the 4-hydroxy-2-pyridone scaffold required for antibacterial activity were explored and compound 6q, identified through further optimization of the series, had an MIC90 value of 8Ć¢Ā€ĀÆĀµg/mL against a panel of highly resistant strains of E. coli. In a murine septicemia model, compound 6q exhibited a PD50 of 8Ć¢Ā€ĀÆmg/kg in mice infected with a lethal dose of E. coli. This novel series of 4-hydroxy-2-pyridones serves as an excellent starting point for the identification of NCEs treating Gram-negative infections.


Subject(s)
Anti-Bacterial Agents/metabolism , Azabicyclo Compounds/chemistry , DNA/metabolism , Niacin/analogs & derivatives , Pyridines/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/metabolism , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , DNA/chemistry , Drug Evaluation, Preclinical , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Gram-Negative Bacteria/drug effects , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Half-Life , Mice , Microbial Sensitivity Tests , Niacin/metabolism , Niacin/pharmacology , Niacin/therapeutic use , Pyridines/metabolism , Pyridines/pharmacology , Pyridines/therapeutic use , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 26(2): 594-601, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26652483

ABSTRACT

A novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides was identified and optimized for activity against the HCV genotype 1b replicon resulting in compounds with potent and selective activity. Further evaluation of this series demonstrated potent activity across HCV genotypes 1a, 2a and 3a. Compound 4z had reduced activity against HCV genotype 1b replicons containing single mutations in the NS4B coding sequence (F98C and V105M) indicating that NS4B is the target. This novel series of 2-(4-sulfonamidophenyl)-indole 3-carboxamides serves as a promising starting point for a pan-genotype HCV discovery program.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Indoles/chemistry , Indoles/pharmacology , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Hepacivirus/chemistry , Hepacivirus/genetics , Hepacivirus/metabolism , Hepatitis C/drug therapy , Humans , Molecular Sequence Data , Mutation , Replicon/drug effects , Sulfonamides/chemistry , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics
6.
Bioorg Med Chem Lett ; 25(4): 781-6, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25613678

ABSTRACT

A structure-activity relationship investigation of various 6-(azaindol-2-yl)pyridine-3-sulfonamides using the HCV replicon cell culture assay led to the identification of a potent series of 7-azaindoles that target the hepatitis C virus NS4B. Compound 2ac, identified via further optimization of the series, has excellent potency against the HCV 1b replicon with an EC50 of 2nM and a selectivity index of >5000 with respect to cellular GAPDH RNA. Compound 2ac also has excellent oral plasma exposure levels in rats, dogs and monkeys and has a favorable liver to plasma distribution profile in rats.


Subject(s)
Hepacivirus/enzymology , Pyridines/chemistry , Pyridines/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dogs , Hepacivirus/drug effects , Humans , Macaca fascicularis , Rats , Structure-Activity Relationship
7.
Antimicrob Agents Chemother ; 57(7): 3250-61, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23629699

ABSTRACT

While new direct-acting antiviral agents for the treatment of chronic hepatitis C virus (HCV) infection have been approved, there is a continued need for novel antiviral agents that act on new targets and can be used in combination with current therapies to enhance efficacy and to restrict the emergence of drug-resistant viral variants. To this end, we have identified a novel class of small molecules, exemplified by PTC725, that target the nonstructural protein 4B (NS4B). PTC725 inhibited HCV 1b (Con1) replicons with a 50% effective concentration (EC50) of 1.7 nM and an EC90 of 9.6 nM and demonstrated a >1,000-fold selectivity window with respect to cytotoxicity. The compounds were fully active against HCV replicon mutants that are resistant to inhibitors of NS3 protease and NS5B polymerase. Replicons selected for resistance to PTC725 harbored amino acid substitutions F98L/C and V105M in NS4B. Anti-replicon activity of PTC725 was additive to synergistic in combination with alpha interferon or with inhibitors of HCV protease and polymerase. Immunofluorescence microscopy demonstrated that neither the HCV inhibitors nor the F98C substitution altered the subcellular localization of NS4B or NS5A in replicon cells. Oral dosing of PTC725 showed a favorable pharmacokinetic profile with high liver and plasma exposure in mice and rats. Modeling of dosing regimens in humans indicates that a once-per-day or twice-per-day oral dosing regimen is feasible. Overall, the preclinical data support the development of PTC725 for use in the treatment of chronic HCV infection.


Subject(s)
Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C/drug therapy , Indoles/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/metabolism , Amino Acid Substitution , Animals , Antiviral Agents/pharmacokinetics , Cell Line, Tumor , Drug Resistance, Viral/genetics , Drug Synergism , Humans , Indoles/metabolism , Indoles/pharmacokinetics , Interferon-alpha/pharmacology , Male , Mice , Microbial Sensitivity Tests , Rats , Rats, Sprague-Dawley , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics , Viral Nonstructural Proteins/genetics , Virus Replication/drug effects
8.
Bioorg Med Chem Lett ; 23(13): 3942-6, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23683596

ABSTRACT

A series of novel 2-phenylindole analogs were synthesized and evaluated for activity in subgenomic HCV replicon inhibition assays. Several compounds containing small alkyl sulfonamides on the phenyl ring exhibiting submicromolar EC50 values against the genotype 1b replicon were identified. Among these, compound 25d potently inhibited the 1b replicon (EC50=0.17 ĀµM) with 147-fold selectivity with respect to cytotoxicity. Compound 25d was stable in the presence of human liver microsomes and had a good pharmacokinetic profile in rats with an IV half-life of 4.3h and oral bioavailability (F) of 58%.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Hepacivirus/drug effects , Indoles/pharmacology , Microsomes, Liver/drug effects , Sulfonamides/pharmacology , Virus Replication/drug effects , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Biological Availability , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Microbial Sensitivity Tests , Molecular Structure , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
9.
Bioorg Med Chem Lett ; 23(13): 3947-53, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23683597

ABSTRACT

A novel series of 6-(indol-2-yl)pyridine-3-sulfonamides was prepared and evaluated for their ability to inhibit HCV RNA replication in the HCV replicon cell culture assay. Preliminary optimization of this series furnished compounds with low nanomolar potency against the HCV genotype 1b replicon. Among these, compound 8c has identified as a potent HCV replicon inhibitor (EC50=4 nM) with a selectivity index with respect to cellular GAPDH of more than 2500. Further, compound 8c had a good pharmacokinetic profile in rats with an IV half-life of 6h and oral bioavailability (F) of 62%. Selection of HCV replicon resistance identified an amino acid substitution in HCV NS4B that confers resistance to these compounds. These compounds hold promise as a new chemotype with anti-HCV activity mediated through an underexploited viral target.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Hepacivirus/drug effects , Indoles/pharmacology , Pyridines/pharmacology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/chemistry , Biological Availability , Dose-Response Relationship, Drug , Hepacivirus/genetics , Humans , Indoles/chemical synthesis , Indoles/chemistry , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Rats , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
10.
Nature ; 447(7140): 87-91, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17450125

ABSTRACT

Nonsense mutations promote premature translational termination and cause anywhere from 5-70% of the individual cases of most inherited diseases. Studies on nonsense-mediated cystic fibrosis have indicated that boosting specific protein synthesis from <1% to as little as 5% of normal levels may greatly reduce the severity or eliminate the principal manifestations of disease. To address the need for a drug capable of suppressing premature termination, we identified PTC124-a new chemical entity that selectively induces ribosomal readthrough of premature but not normal termination codons. PTC124 activity, optimized using nonsense-containing reporters, promoted dystrophin production in primary muscle cells from humans and mdx mice expressing dystrophin nonsense alleles, and rescued striated muscle function in mdx mice within 2-8 weeks of drug exposure. PTC124 was well tolerated in animals at plasma exposures substantially in excess of those required for nonsense suppression. The selectivity of PTC124 for premature termination codons, its well characterized activity profile, oral bioavailability and pharmacological properties indicate that this drug may have broad clinical potential for the treatment of a large group of genetic disorders with limited or no therapeutic options.


Subject(s)
Codon, Nonsense/genetics , Genetic Diseases, Inborn/drug therapy , Genetic Diseases, Inborn/genetics , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Protein Biosynthesis/drug effects , Alleles , Animals , Biological Availability , Dystrophin/biosynthesis , Dystrophin/genetics , Genetic Diseases, Inborn/blood , Humans , Mice , Mice, Inbred mdx , Oxadiazoles/administration & dosage , Oxadiazoles/pharmacokinetics , Phenotype , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Substrate Specificity
11.
Elife ; 112022 02 09.
Article in English | MEDLINE | ID: mdl-35137690

ABSTRACT

Antibiotic-resistant Neisseria gonorrhoeae (Ng) are an emerging public health threat due to increasing numbers of multidrug resistant (MDR) organisms. We identified two novel orally active inhibitors, PTC-847 and PTC-672, that exhibit a narrow spectrum of activity against Ng including MDR isolates. By selecting organisms resistant to the novel inhibitors and sequencing their genomes, we identified a new therapeutic target, the class Ia ribonucleotide reductase (RNR). Resistance mutations in Ng map to the N-terminal cone domain of the α subunit, which we show here is involved in forming an inhibited α4Ɵ4 state in the presence of the Ɵ subunit and allosteric effector dATP. Enzyme assays confirm that PTC-847 and PTC-672 inhibit Ng RNR and reveal that allosteric effector dATP potentiates the inhibitory effect. Oral administration of PTC-672 reduces Ng infection in a mouse model and may have therapeutic potential for treatment of Ng that is resistant to current drugs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Gonorrhea/drug therapy , Pyridines/pharmacology , Ribonucleotide Reductases/metabolism , Allosteric Regulation , Animals , Deoxyadenine Nucleotides/metabolism , Disease Models, Animal , Escherichia coli/drug effects , Female , Gonorrhea/metabolism , Humans , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests/methods , Neisseria gonorrhoeae/drug effects
12.
Nat Commun ; 12(1): 3332, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099697

ABSTRACT

Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due to mutation lead to dysregulated protein expression and contribute to a substantial fraction of human disease. Several classes of splicing modulator compounds (SMCs) have been recently identified and establish that pre-mRNA splicing represents a target for therapy. We describe herein the identification of BPN-15477, a SMC that restores correct splicing of ELP1 exon 20. Using transcriptome sequencing from treated fibroblast cells and a machine learning approach, we identify BPN-15477 responsive sequence signatures. We then leverage this model to discover 155 human disease genes harboring ClinVar mutations predicted to alter pre-mRNA splicing as targets for BPN-15477. Splicing assays confirm successful correction of splicing defects caused by mutations in CFTR, LIPA, MLH1 and MAPT. Subsequent validations in two disease-relevant cellular models demonstrate that BPN-15477 increases functional protein, confirming the clinical potential of our predictions.


Subject(s)
Deep Learning , Gene Targeting/methods , RNA Splicing , Animals , Computational Biology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Exons , HEK293 Cells , Humans , Mice , Mice, Transgenic , MutL Protein Homolog 1/genetics , Mutation , Phenethylamines/administration & dosage , Pyridazines/administration & dosage , Sterol Esterase/genetics , Transcriptome , tau Proteins/genetics
13.
Nat Commun ; 12(1): 7299, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911927

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by expansion of cytosine-adenine-guanine (CAG) trinucleotide repeats in the huntingtin (HTT) gene. Consequently, the mutant protein is ubiquitously expressed and drives pathogenesis of HD through a toxic gain-of-function mechanism. Animal models of HD have demonstrated that reducing huntingtin (HTT) protein levels alleviates motor and neuropathological abnormalities. Investigational drugs aim to reduce HTT levels by repressing HTT transcription, stability or translation. These drugs require invasive procedures to reach the central nervous system (CNS) and do not achieve broad CNS distribution. Here, we describe the identification of orally bioavailable small molecules with broad distribution throughout the CNS, which lower HTT expression consistently throughout the CNS and periphery through selective modulation of pre-messenger RNA splicing. These compounds act by promoting the inclusion of a pseudoexon containing a premature termination codon (stop-codon psiExon), leading to HTT mRNA degradation and reduction of HTT levels.


Subject(s)
Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/genetics , RNA Splicing , Small Molecule Libraries/administration & dosage , Animals , Central Nervous System/drug effects , Central Nervous System/metabolism , Disease Models, Animal , Humans , Huntington Disease/metabolism , Mice , RNA Splicing/drug effects , RNA Stability/drug effects , Trinucleotide Repeat Expansion/drug effects
14.
J Med Chem ; 61(10): 4456-4475, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29727185

ABSTRACT

There exists an urgent medical need to identify new chemical entities (NCEs) targeting multidrug resistant (MDR) bacterial infections, particularly those caused by Gram-negative pathogens. 4-Hydroxy-2-pyridones represent a novel class of nonfluoroquinolone inhibitors of bacterial type II topoisomerases active against MDR Gram-negative bacteria. Herein, we report on the discovery and structure-activity relationships of a series of fused indolyl-containing 4-hydroxy-2-pyridones with improved in vitro antibacterial activity against fluoroquinolone resistant strains. Compounds 6o and 6v are representative of this class, targeting both bacterial DNA gyrase and topoisomerase IV (Topo IV). In an abbreviated susceptibility screen, compounds 6o and 6v showed improved MIC90 values against Escherichia coli (0.5-1 Āµg/mL) and Acinetobacter baumannii (8-16 Āµg/mL) compared to the precursor compounds. In a murine septicemia model, both compounds showed complete protection in mice infected with a lethal dose of E. coli.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Topoisomerases, Type II/chemistry , Drug Discovery , Drug Resistance, Multiple, Bacterial/drug effects , Gram-Negative Bacteria/drug effects , Sepsis/drug therapy , Topoisomerase II Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Female , Mice , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Protein Conformation , Pyridines/chemistry , Sepsis/microbiology , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry
15.
PLoS One ; 12(6): e0179100, 2017.
Article in English | MEDLINE | ID: mdl-28658263

ABSTRACT

Despite advances in antiretroviral therapy, HIV-1 infection remains incurable in patients and continues to present a significant public health burden worldwide. While a number of factors contribute to persistent HIV-1 infection in patients, the presence of a stable, long-lived reservoir of latent provirus represents a significant hurdle in realizing an effective cure. One potential strategy to eliminate HIV-1 reservoirs in patients is reactivation of latent provirus with latency reversing agents in combination with antiretroviral therapy, a strategy termed "shock and kill". This strategy has shown limited clinical effectiveness thus far, potentially due to limitations of the few therapeutics currently available. We have identified a novel class of benzazole compounds effective at inducing HIV-1 expression in several cellular models. These compounds do not act via histone deacetylase inhibition or T cell activation, and show specificity in activating HIV-1 in vitro. Initial exploration of structure-activity relationships and pharmaceutical properties indicates that these compounds represent a potential scaffold for development of more potent HIV-1 latency reversing agents.


Subject(s)
Azoles/pharmacology , Benzene/pharmacology , HIV-1/drug effects , Transcription, Genetic/drug effects , Azoles/chemistry , Benzene/chemistry , Cell Line , HIV-1/genetics , Humans
16.
J Med Chem ; 59(13): 6086-100, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27299419

ABSTRACT

Spinal muscular atrophy (SMA) is the leading genetic cause of infant and toddler mortality, and there is currently no approved therapy available. SMA is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. These mutations or deletions result in low levels of functional SMN protein. SMN2, a paralogous gene to SMN1, undergoes alternative splicing and exclusion of exon 7, producing an unstable, truncated SMNΔ7 protein. Herein, we report the identification of a pyridopyrimidinone series of small molecules that modify the alternative splicing of SMN2, increasing the production of full-length SMN2 mRNA. Upon oral administration of our small molecules, the levels of full-length SMN protein were restored in two mouse models of SMA. In-depth lead optimization in the pyridopyrimidinone series culminated in the selection of compound 3 (RG7800), the first small molecule SMN2 splicing modifier to enter human clinical trials.


Subject(s)
Alternative Splicing/drug effects , Muscular Atrophy, Spinal/drug therapy , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , RNA, Messenger/genetics , Survival of Motor Neuron 2 Protein/genetics , Animals , Exons/drug effects , Humans , Mice , Muscular Atrophy, Spinal/genetics , Pyrimidinones/pharmacokinetics , Pyrimidinones/therapeutic use
17.
J Med Chem ; 59(13): 6070-85, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27299569

ABSTRACT

The underlying cause of spinal muscular atrophy (SMA) is a deficiency of the survival motor neuron (SMN) protein. Starting from hits identified in a high-throughput screening campaign and through structure-activity relationship investigations, we have developed small molecules that potently shift the alternative splicing of the SMN2 exon 7, resulting in increased production of the full-length SMN mRNA and protein. Three novel chemical series, represented by compounds 9, 14, and 20, have been optimized to increase the level of SMN protein by >50% in SMA patient-derived fibroblasts at concentrations of <160 nM. Daily administration of these compounds to severe SMA Δ7 mice results in an increased production of SMN protein in disease-relevant tissues and a significant increase in median survival time in a dose-dependent manner. Our work supports the development of an orally administered small molecule for the treatment of patients with SMA.


Subject(s)
Alternative Splicing/drug effects , Muscular Atrophy, Spinal/drug therapy , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Animals , Cell Line , Drug Discovery , Exons/drug effects , HEK293 Cells , Humans , Mice, Knockout , Muscular Atrophy, Spinal/genetics , RNA, Messenger/genetics , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship , Survival of Motor Neuron 2 Protein/genetics
18.
J Org Chem ; 64(22): 8156-8160, 1999 Oct 29.
Article in English | MEDLINE | ID: mdl-11674731

ABSTRACT

A short and efficient synthesis of the novel 1,4,2-benzodiazaphosphepin-5-one 2-oxide ring system, a phosphonamidate isostere of the 1,4-benzodiazepine-2,5-dione system, has been carried out in good overall yield. The key step is the base-induced cyclization of (2-aminobenzamido)methylphosphonates 6a-c to the 1,4,2-benzodiazaphosphepin-5-one 2-oxides 7a-c. Alkylation of 7b with methyl iodide gives the expected N-methyl analogue 9. When a tandem one-pot cyclization/alkylation is carried out from 6b in the presence of excess base, the sole isolable product obtained is the phosphonate 13, presumably via ethanolysis of a transiently formed 9. Carrying out the tandem cyclization/alkylation in the absence of excess base, however, affords only 9. Thionation of 7 with Lawesson's reagent occurs at either the phosphonamidate oxygen (P-2) or the amide carbonyl (C-5) depending on the steric constraint of the N-4 substituent.

19.
J Med Chem ; 57(5): 2121-35, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24266880

ABSTRACT

A novel, potent, and orally bioavailable inhibitor of hepatitis C RNA replication targeting NS4B, compound 4t (PTC725), has been identified through chemical optimization of the 6-(indol-2-yl)pyridine-3-sulfonamide 2 to improve DMPK and safety properties. The focus of the SAR investigations has been to identify the optimal combination of substituents at the indole N-1, C-5, and C-6 positions and the sulfonamide group to limit the potential for in vivo oxidative metabolism and to achieve an acceptable pharmacokinetic profile. Compound 4t has excellent potency against the HCV 1b replicon, with an EC50 = 2 nM and a selectivity index of >5000 with respect to cellular GAPDH. Compound 4t has an overall favorable pharmacokinetic profile with oral bioavailability values of 62%, 78%, and 18% in rats, dogs, and monkeys, respectively, as well as favorable tissue distribution properties with a liver to plasma exposure ratio of 25 in rats.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Sulfonamides/pharmacology , Administration, Oral , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Area Under Curve , Biological Availability , Dogs , Haplorhini , Humans , Rats , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/pharmacokinetics
20.
Science ; 345(6197): 688-93, 2014 Aug 08.
Article in English | MEDLINE | ID: mdl-25104390

ABSTRACT

Spinal muscular atrophy (SMA) is a genetic disease caused by mutation or deletion of the survival of motor neuron 1 (SMN1) gene. A paralogous gene in humans, SMN2, produces low, insufficient levels of functional SMN protein due to alternative splicing that truncates the transcript. The decreased levels of SMN protein lead to progressive neuromuscular degeneration and high rates of mortality. Through chemical screening and optimization, we identified orally available small molecules that shift the balance of SMN2 splicing toward the production of full-length SMN2 messenger RNA with high selectivity. Administration of these compounds to Δ7 mice, a model of severe SMA, led to an increase in SMN protein levels, improvement of motor function, and protection of the neuromuscular circuit. These compounds also extended the life span of the mice. Selective SMN2 splicing modifiers may have therapeutic potential for patients with SMA.


Subject(s)
Alternative Splicing/drug effects , Coumarins/administration & dosage , Isocoumarins/administration & dosage , Longevity/drug effects , Muscular Atrophy, Spinal/drug therapy , Pyrimidinones/administration & dosage , Small Molecule Libraries/administration & dosage , Survival of Motor Neuron 2 Protein/genetics , Administration, Oral , Animals , Cells, Cultured , Coumarins/chemistry , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Isocoumarins/chemistry , Mice , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Pyrimidinones/chemistry , RNA, Messenger/genetics , Sequence Deletion , Small Molecule Libraries/chemistry , Survival of Motor Neuron 2 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL