Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Publication year range
1.
Genes Dev ; 31(4): 370-382, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28289141

ABSTRACT

Human colorectal cancer (CRC) is a major cause of cancer mortality and frequently harbors activating mutations in the KRAS gene. To understand the role of oncogenic KRAS in CRC, we engineered a mouse model of metastatic CRC that harbors an inducible oncogenic Kras allele (Krasmut ) and conditional null alleles of Apc and Trp53 (iKAP). The iKAP model recapitulates tumor progression from adenoma through metastases. Whole-exome sequencing revealed that the Krasmut allele was heterogenous in primary tumors yet homogenous in metastases, a pattern consistent with activated Krasmut signaling being a driver of progression to metastasis. System-level and functional analyses revealed the TGF-ß pathway as a key mediator of Krasmut -driven invasiveness. Genetic extinction of Krasmut resulted in specific elimination of the Krasmut subpopulation in primary and metastatic tumors, leading to apoptotic elimination of advanced invasive and metastatic disease. This faithful CRC model provides genetic evidence that Krasmut drives CRC invasion and maintenance of metastases.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/physiopathology , Neoplasm Invasiveness/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Genotype , Humans , Mice , Mice, Inbred C57BL , Mutation , Neoplasm Metastasis , Proto-Oncogene Proteins p21(ras)/genetics , Transcriptome , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
2.
BMC Cancer ; 22(1): 945, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050658

ABSTRACT

BACKGROUND: Gut microbiome community composition differs between cervical cancer (CC) patients and healthy controls, and increased gut diversity is associated with improved outcomes after treatment. We proposed that functions of specific microbial species adjoining the mucus layer may directly impact the biology of CC. METHOD: Metagenomes of rectal swabs in 41 CC patients were examined by whole-genome shotgun sequencing to link taxonomic structures, molecular functions, and metabolic pathway to patient's clinical characteristics. RESULTS: Significant association of molecular functions encoded by the metagenomes was found with initial tumor size and stage. Profiling of the molecular function abundances and their distributions identified 2 microbial communities co-existing in each metagenome but having distinct metabolism and taxonomic structures. Community A (Clostridia and Proteobacteria predominant) was characterized by high activity of pathways involved in stress response, mucus glycan degradation and utilization of degradation byproducts. This community was prevalent in patients with larger, advanced stage tumors. Conversely, community B (Bacteroidia predominant) was characterized by fast growth, active oxidative phosphorylation, and production of vitamins. This community was prevalent in patients with smaller, early-stage tumors. CONCLUSIONS: In this study, enrichment of mucus degrading microbial communities in rectal metagenomes of CC patients was associated with larger, more advanced stage tumors.


Subject(s)
Gastrointestinal Microbiome , Uterine Cervical Neoplasms , Female , Gastrointestinal Microbiome/genetics , Humans , Metabolic Networks and Pathways , Metagenome , Mucus
3.
BMC Med ; 14(1): 168, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27776519

ABSTRACT

BACKGROUND: While clinical outcomes following immunotherapy have shown an association with tumor mutation load using whole exome sequencing (WES), its clinical applicability is currently limited by cost and bioinformatics requirements. METHODS: We developed a method to accurately derive the predicted total mutation load (PTML) within individual tumors from a small set of genes that can be used in clinical next generation sequencing (NGS) panels. PTML was derived from the actual total mutation load (ATML) of 575 distinct melanoma and lung cancer samples and validated using independent melanoma (n = 312) and lung cancer (n = 217) cohorts. The correlation of PTML status with clinical outcome, following distinct immunotherapies, was assessed using the Kaplan-Meier method. RESULTS: PTML (derived from 170 genes) was highly correlated with ATML in cutaneous melanoma and lung adenocarcinoma validation cohorts (R2 = 0.73 and R2 = 0.82, respectively). PTML was strongly associated with clinical outcome to ipilimumab (anti-CTLA-4, three cohorts) and adoptive T-cell therapy (1 cohort) clinical outcome in melanoma. Clinical benefit from pembrolizumab (anti-PD-1) in lung cancer was also shown to significantly correlate with PTML status (log rank P value < 0.05 in all cohorts). CONCLUSIONS: The approach of using small NGS gene panels, already applied to guide employment of targeted therapies, may have utility in the personalized use of immunotherapy in cancer.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/therapy , Immunotherapy/methods , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Melanoma/genetics , Melanoma/therapy , Mutation , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Adenocarcinoma/immunology , Adenocarcinoma of Lung , Algorithms , Antibodies, Monoclonal/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cohort Studies , Exome , Female , Humans , Immunotherapy, Adoptive/methods , Ipilimumab , Lung Neoplasms/immunology , Male , Melanoma/immunology , Middle Aged , Skin Neoplasms/immunology , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tumor Burden/genetics , Melanoma, Cutaneous Malignant
4.
Mol Plant Microbe Interact ; 27(7): 664-77, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24580106

ABSTRACT

Genomic characteristics discriminating parasitic and mutualistic relationship of bacterial symbionts with plants are poorly understood. This study comparatively analyzed the genomes of 54 mutualists and pathogens to discover genomic markers associated with the different phenotypes. Using metabolic network models, we predict external environments associated with free-living and symbiotic lifestyles and quantify dependences of symbionts on the host in terms of the consumed metabolites. We show that specific differences between the phenotypes are pronounced at the levels of metabolic enzymes, especially carbohydrate active, and protein functions. Overall, biosynthetic functions are enriched and more diverse in plant mutualists whereas processes and functions involved in degradation and host invasion are enriched and more diverse in pathogens. A distinctive characteristic of plant pathogens is a putative novel secretion system with a circadian rhythm regulator. A specific marker of plant mutualists is the co-residence of genes encoding nitrogenase and ribulose bisphosphate carboxylase/oxygenase (RuBisCO). We predict that RuBisCO is likely used in a putative metabolic pathway to supplement carbon obtained heterotrophically with low-cost assimilation of carbon from CO2. We validate results of the comparative analysis by predicting correct phenotype, pathogenic or mutualistic, for 20 symbionts in an independent set of 30 pathogens, mutualists, and commensals.


Subject(s)
Bacteria/metabolism , Gene Expression Regulation, Bacterial/physiology , Gene Expression Regulation, Plant/physiology , Plants/metabolism , Plants/microbiology , Symbiosis/physiology , Bacteria/genetics , Biomarkers , Computer Simulation , Genomics , Phylogeny , Plants/genetics , Transcriptome
5.
Nucleic Acids Res ; 40(17): e131, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22638576

ABSTRACT

Due to advances in high-throughput biotechnologies biological information is being collected in databases at an amazing rate, requiring novel computational approaches that process collected data into new knowledge in a timely manner. In this study, we propose a computational framework for discovering modular structure, relationships and regularities in complex data. The framework utilizes a semantic-preserving vocabulary to convert records of biological annotations of an object, such as an organism, gene, chemical or sequence, into networks (Anets) of the associated annotations. An association between a pair of annotations in an Anet is determined by the similarity of their co-occurrence pattern with all other annotations in the data. This feature captures associations between annotations that do not necessarily co-occur with each other and facilitates discovery of the most significant relationships in the collected data through clustering and visualization of the Anet. To demonstrate this approach, we applied the framework to the analysis of metadata from the Genomes OnLine Database and produced a biological map of sequenced prokaryotic organisms with three major clusters of metadata that represent pathogens, environmental isolates and plant symbionts.


Subject(s)
Genomics/methods , Algorithms , Cluster Analysis , Databases, Genetic , Gene Regulatory Networks , Genome, Bacterial , Molecular Sequence Annotation , Monte Carlo Method , Vocabulary, Controlled
6.
Proc Natl Acad Sci U S A ; 108(33): 13752-7, 2011 Aug 16.
Article in English | MEDLINE | ID: mdl-21825121

ABSTRACT

Clostridium thermocellum is a thermophilic, obligately anaerobic, gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.


Subject(s)
Alcohol Dehydrogenase/genetics , Clostridium thermocellum/genetics , Drug Tolerance/genetics , Ethanol/metabolism , Mutation , Aldehyde Oxidoreductases , Clostridium thermocellum/enzymology , Clostridium thermocellum/physiology , NAD , NADP
7.
Sci Rep ; 14(1): 16300, 2024 07 15.
Article in English | MEDLINE | ID: mdl-39009605

ABSTRACT

Adenoid cystic carcinoma (ACC) is a rare, usually slow-growing yet aggressive head and neck malignancy. Despite its clinical significance, our understanding of the cellular evolution and microenvironment in ACC remains limited. We investigated the intratumoral microbiomes of 50 ACC tumor tissues and 33 adjacent normal tissues using 16S rRNA gene sequencing. This allowed us to characterize the bacterial communities within the ACC and explore potential associations between the bacterial community structure, patient clinical characteristics, and tumor molecular features obtained through RNA sequencing. The bacterial composition in the ACC was significantly different from that in adjacent normal salivary tissue, and the ACC exhibited diverse levels of species richness. We identified two main microbial subtypes within the ACC: oral-like and gut-like. Oral-like microbiomes, characterized by increased diversity and abundance of Neisseria, Leptotrichia, Actinomyces, Streptococcus, Rothia, and Veillonella (commonly found in healthy oral cavities), were associated with a less aggressive ACC-II molecular subtype and improved patient outcomes. Notably, we identified the same oral genera in oral cancer and head and neck squamous cell carcinomas. In both cancers, they were part of shared oral communities associated with a more diverse microbiome, less aggressive tumor phenotype, and better survival that reveal the genera as potential pancancer biomarkers for favorable microbiomes in ACC and other head and neck cancers. Conversely, gut-like intratumoral microbiomes, which feature low diversity and colonization by gut mucus layer-degrading species, such as Bacteroides, Akkermansia, Blautia, Bifidobacterium, and Enterococcus, were associated with poorer outcomes. Elevated levels of Bacteroides thetaiotaomicron were independently associated with significantly worse survival and positively correlated with tumor cell biosynthesis of glycan-based cell membrane components.


Subject(s)
Carcinoma, Adenoid Cystic , Head and Neck Neoplasms , Microbiota , RNA, Ribosomal, 16S , Humans , Carcinoma, Adenoid Cystic/microbiology , Carcinoma, Adenoid Cystic/pathology , Head and Neck Neoplasms/microbiology , Head and Neck Neoplasms/pathology , Female , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Aged , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
8.
Brachytherapy ; 23(2): 123-135, 2024.
Article in English | MEDLINE | ID: mdl-38129211

ABSTRACT

BACKGROUND: Chemoradiation (CRT) may modulate the immune milieu as an in-situ vaccine. Rapid dose delivery of brachytherapy has unclear impact on T-cell repertoires. HPV-associated cancers express viral oncoproteins E6/E7, which enable tracking antigen/tumor-specific immunity during CRT. METHODS: Thirteen cervical cancer patients on a multi-institutional prospective protocol from 1/2020-1/2023 underwent standard-of-care CRT with pulsed-dose-rate brachytherapy boost (2 fractions). Cervix swabs at various timepoints underwent multiplex DNA deep sequencing of the TCR-ß/CDR3 region with immunoSEQ. Separately, HPV-responsive T-cell clones were also expanded ex vivo. Statistical analysis was via Mann-Whitney-U. RESULTS: TCR productive clonality, templates, frequency, or rearrangements increased post-brachytherapy in 8 patients. Seven patients had E6/E7-responsive evolution over CRT with increased productive templates (ranges: 1.2-50.2 fold-increase from baseline), frequency (1.2-1.7), rearrangements (1.2-40.2), and clonality (1.2-15.4). Five patients had HPV-responsive clonal expansion post-brachytherapy, without changes in HPV non-responsive clones. Epitope mapping revealed VDJ rearrangements targeting cervical cancer-associated antigens in 5 patients. The only two patients with disease recurrence lacked response in all metrics. A lack of global TCR remodeling correlated with worse recurrence-free survival, p = 0.04. CONCLUSION: CRT and brachytherapy alters the cervical cancer microenvironment to facilitate the expansion of specific T-cell populations, which may contribute to treatment efficacy.


Subject(s)
Brachytherapy , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/radiotherapy , Cervix Uteri , Papillomavirus Infections/complications , T-Lymphocytes , Brachytherapy/methods , Prospective Studies , Neoplasm Recurrence, Local , Receptors, Antigen, T-Cell , Tumor Microenvironment
9.
Cell Rep Med ; 5(3): 101463, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38471502

ABSTRACT

[18F]Fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) are indispensable components in modern medicine. Although PET can provide additional diagnostic value, it is costly and not universally accessible, particularly in low-income countries. To bridge this gap, we have developed a conditional generative adversarial network pipeline that can produce FDG-PET from diagnostic CT scans based on multi-center multi-modal lung cancer datasets (n = 1,478). Synthetic PET images are validated across imaging, biological, and clinical aspects. Radiologists confirm comparable imaging quality and tumor contrast between synthetic and actual PET scans. Radiogenomics analysis further proves that the dysregulated cancer hallmark pathways of synthetic PET are consistent with actual PET. We also demonstrate the clinical values of synthetic PET in improving lung cancer diagnosis, staging, risk prediction, and prognosis. Taken together, this proof-of-concept study testifies to the feasibility of applying deep learning to obtain high-fidelity PET translated from CT.


Subject(s)
Lung Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Tomography, X-Ray Computed , Prognosis
10.
Nat Commun ; 15(1): 3152, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605064

ABSTRACT

While we recognize the prognostic importance of clinicopathological measures and circulating tumor DNA (ctDNA), the independent contribution of quantitative image markers to prognosis in non-small cell lung cancer (NSCLC) remains underexplored. In our multi-institutional study of 394 NSCLC patients, we utilize pre-treatment computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) to establish a habitat imaging framework for assessing regional heterogeneity within individual tumors. This framework identifies three PET/CT subtypes, which maintain prognostic value after adjusting for clinicopathologic risk factors including tumor volume. Additionally, these subtypes complement ctDNA in predicting disease recurrence. Radiogenomics analysis unveil the molecular underpinnings of these imaging subtypes, highlighting downregulation in interferon alpha and gamma pathways in the high-risk subtype. In summary, our study demonstrates that these habitat imaging subtypes effectively stratify NSCLC patients based on their risk levels for disease recurrence after initial curative surgery or radiotherapy, providing valuable insights for personalized treatment approaches.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Positron Emission Tomography Computed Tomography/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Positron-Emission Tomography , Tomography, X-Ray Computed , Retrospective Studies
11.
Bioinformatics ; 28(5): 750-1, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22238270

ABSTRACT

UNLABELLED: The BioEnergy Science Center (BESC) is undertaking large experimental campaigns to understand the biosynthesis and biodegradation of biomass and to develop biofuel solutions. BESC is generating large volumes of diverse data, including genome sequences, omics data and assay results. The purpose of the BESC Knowledgebase is to serve as a centralized repository for experimentally generated data and to provide an integrated, interactive and user-friendly analysis framework. The Portal makes available tools for visualization, integration and analysis of data either produced by BESC or obtained from external resources. AVAILABILITY: http://besckb.ornl.gov.


Subject(s)
Biofuels , Knowledge Bases , Bacteria/metabolism , Eukaryota/metabolism , Genomics , Plants/metabolism
12.
PLoS One ; 18(1): e0279590, 2023.
Article in English | MEDLINE | ID: mdl-36607962

ABSTRACT

We evaluated the association of disease outcome with T cell immune-related characteristics and T cell receptor (TCR) repertoire in malignant ascites from patients with high-grade epithelial ovarian cancer. Ascitic fluid samples were collected from 47 high-grade epithelial ovarian cancer patients and analyzed using flow cytometry and TCR sequencing to characterize the complementarity determining region 3 TCR ß-chain. TCR functions were analyzed using the McPAS-TCR and VDJ databases. TCR clustering was implemented using Grouping of Lymphocyte Interactions by Paratope Hotspots software. Patients with poor prognosis had ascites characterized by an increased ratio of CD8+ T cells to regulatory T cells, which correlated with an increased productive frequency of the top 100 clones and decreased productive entropy. TCRs enriched in patients with an excellent or good prognosis were more likely to recognize cancer antigens and contained more TCR reads predicted to recognize epithelial ovarian cancer antigens. In addition, a TCR motif that is predicted to bind the TP53 neoantigen was identified, and this motif was enriched in patients with an excellent or good prognosis. Ascitic fluid in high-grade epithelial ovarian cancer patients with an excellent or good prognosis is enriched with TCRs that may recognize ovarian cancer-specific neoantigens, including mutated TP53 and TEAD1. These results suggest that an effective antigen-specific immune response in ascites is vital for a good outcome in high-grade epithelial ovarian cancer.


Subject(s)
Ascites , Ovarian Neoplasms , Humans , Female , Carcinoma, Ovarian Epithelial/metabolism , Ascites/metabolism , Receptors, Antigen, T-Cell , Ovarian Neoplasms/metabolism , CD8-Positive T-Lymphocytes , Immunity
13.
Int J Radiat Oncol Biol Phys ; 116(5): 1043-1054, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36801350

ABSTRACT

PURPOSE: Human papillomavirus (HPV) is the primary driver of cervical cancer. Although studies in other malignancies correlated peripheral blood DNA clearance with favorable outcomes, research on the prognostic value of HPV clearance in gynecologic cancers using intratumoral HPV is scarce. We aimed to quantify the intratumoral HPV virome in patients undergoing chemoradiation therapy (CRT) and associate this with clinical characteristics and outcomes. METHODS AND MATERIALS: This prospective study enrolled 79 patients with stage IB-IVB cervical cancer undergoing definitive CRT. Cervical tumor swabs collected at baseline and week 5 (end of intensity modulated radiation therapy) were sent for shotgun metagenome sequencing and processed via VirMAP, a viral genome sequencing and identification tool for all known HPV types. The data were categorized into HPV groups (16, 18, high risk [HR], and low risk [LR]). We used independent t tests and Wilcoxon signed-rank to compare continuous variables and χ2 and Fisher exact tests to compare categorical variables. Kaplan-Meier survival modeling was performed with log-rank testing. HPV genotyping was verified using quantitative polymerase chain reaction to validate VirMAP results using receiver operating characteristic curve and Cohen's kappa. RESULTS: At baseline, 42%, 12%, 25%, and 16% of patients were positive for HPV 16, HPV 18, HPV HR, and HPV LR, respectively, and 8% were HPV negative. HPV type was associated with insurance status and CRT response. Patients with HPV 16+ and other HPV HR+ tumors were significantly more likely to have a complete response to CRT versus patients with HPV 18 and HPV LR/HPV-negative tumors. Overall HPV viral loads predominantly decreased throughout CRT, except for HPV LR viral load. CONCLUSIONS: Rarer, less well-studied HPV types in cervical tumors are clinically significant. HPV 18 and HPV LR/negative tumors are associated with poor CRT response. This feasibility study provides a framework for a larger study of intratumoral HPV profiling to predict outcomes in patients with cervical cancer.


Subject(s)
Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Prospective Studies , Genotype , Virome , Papillomaviridae/genetics , DNA, Viral/analysis
14.
Front Immunol ; 14: 1051431, 2023.
Article in English | MEDLINE | ID: mdl-37063829

ABSTRACT

Background: Squamous cell carcinoma of the anus (SCCA) is a rare gastrointestinal cancer. Factors associated with progression of HPV infection to anal dysplasia and cancer are unclear and screening guidelines and approaches for anal dysplasia are less clear than for cervical dysplasia. One potential contributing factor is the anorectal microbiome. In this study, we aimed to identify differences in anal microbiome composition in the settings of HPV infection, anal dysplasia, and anal cancer in this rare disease. Methods: Patients were enrolled in two prospective studies. Patients with anal dysplasia were part of a cross-sectional cohort that enrolled women with high-grade lower genital tract dysplasia. Anorectal tumor swabs were prospectively collected from patients with biopsy-confirmed locally advanced SCCA prior to receiving standard-of-care chemoradiotherapy (CRT). Patients with high-grade lower genital tract dysplasia without anal dysplasia were considered high-risk (HR Normal). 16S V4 rRNA Microbiome sequencing was performed for anal swabs. Alpha and Beta Diversity and composition were compared for HR Normal, anal dysplasia, and anal cancer. Results: 60 patients with high-grade lower genital tract dysplasia were initially enrolled. Seven patients had concurrent anal dysplasia and 44 patients were considered HR Normal. Anorectal swabs from 21 patients with localized SCCA were included, sequenced, and analyzed in the study. Analysis of weighted and unweighted UniFrac distances demonstrated significant differences in microbial community composition between anal cancer and HR normal (p=0.018). LEfSe identified that all three groups exhibited differential enrichment of specific taxa. Peptoniphilus (p=0.028), Fusobacteria (p=0.0295), Porphyromonas (p=0.034), and Prevotella (p=0.029) were enriched in anal cancer specimens when compared to HR normal. Conclusion: Although alpha diversity was similar between HR Normal, dysplasia and cancer patients, composition differed significantly between the three groups. Increased anorectal Peptoniphilus, Fusobacteria, Porphyromonas, and Prevotella abundance were associated with anal cancer. These organisms have been reported in various gastrointestinal cancers with roles in facilitating the proinflammatory microenvironment and neoplasia progression. Future work should investigate a potential role of microbiome analysis in screening for anal dysplasia and investigation into potential mechanisms of how these microbial imbalances influence the immune system and anal carcinogenesis.


Subject(s)
Anus Neoplasms , Carcinoma, Squamous Cell , Microbiota , Papillomavirus Infections , Humans , Female , Prospective Studies , Cross-Sectional Studies , Carcinoma, Squamous Cell/complications , Tumor Microenvironment
15.
PLoS One ; 17(10): e0274457, 2022.
Article in English | MEDLINE | ID: mdl-36201462

ABSTRACT

BACKGROUND: Clinically relevant genetic predictors of radiation response for cervical cancer are understudied due to the morbidity of repeat invasive biopsies required to obtain genetic material. Thus, we aimed to demonstrate the feasibility of a novel noninvasive cervical swab technique to (1) collect tumor DNA with adequate throughput to (2) perform whole-exome sequencing (WES) at serial time points over the course of chemoradiation therapy (CRT). METHODS: Cervical cancer tumor samples from patients undergoing chemoradiation were collected at baseline, at week 1, week 3, and at the completion of CRT (week 5) using a noninvasive swab-based biopsy technique. Swab samples were analyzed with whole-exome sequencing (WES) with mutation calling using a custom pipeline optimized for shallow whole-exome sequencing with low tumor purity (TP). Tumor mutation changes over the course of treatment were profiled. RESULTS: 216 samples were collected and successfully sequenced for 70 patients (94% of total number of tumor samples collected). A total of 33 patients had a complete set of samples at all four time points. The mean mapping rate was 98% for all samples, and the mean target coverage was 180. Estimated TP was greater than 5% for all samples. Overall mutation frequency decreased during CRT but mapping rate and mean target coverage remained at >98% and >180 reads at week 5. CONCLUSION: This study demonstrates the feasibility and application of a noninvasive swab-based technique for WES analysis which may be applied to investigate dynamic tumor mutational changes during treatment to identify novel genes which confer radiation resistance.


Subject(s)
Exome , Uterine Cervical Neoplasms , Feasibility Studies , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/therapy , Exome Sequencing
16.
Neoplasia ; 31: 100813, 2022 09.
Article in English | MEDLINE | ID: mdl-35834946

ABSTRACT

Recently, increased number of studies have demonstrated a relationship between the oral microbiome and development of head and neck cancer, however, there are few studies to investigate the role of oral bacteria in the context of the tumor microenvironment in a single head and neck subsite. Here, paired tumor and adjacent normal tissues from thirty-seven oral tongue squamous cell carcinoma (SCC) patients were subjected to 16S rRNA gene sequencing and whole exome sequencing (WES), in addition to RNA sequencing for tumor samples. We observed that Fusobacterium was significantly enriched in oral tongue cancer and that Rothia and Streptococcus were enriched in adjacent normal tissues. A decrease in alpha diversity was found in tumor when compared to adjacent normal tissues. While increased Fusobacterium in tumor samples was not associated with changes in immune cell infiltration, it was associated with increased PD-L1 mRNA expression. Therefore, we examined the effects of Fusobacterium on PD-L1 expression in head and neck SCC cell lines. We demonstrated that infection with Fusobacterium species can increase both PD-L1 mRNA and surface PD-L1 protein expression on head and neck cancer cell lines. The correlation between Fusobacterium and PD-L1 expression in oral tongue SCC, in conjunction with the ability of the bacterium to induce PD-L1 expression in vitro suggests a potential role for Fusobacterium on modulation of the tumor immune microenvironment in head and neck cancer.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Tongue Neoplasms , B7-H1 Antigen/genetics , Fusobacterium/genetics , Fusobacterium/metabolism , Humans , Mouth Neoplasms/genetics , RNA, Messenger , RNA, Ribosomal, 16S/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Tongue Neoplasms/genetics , Tumor Microenvironment/genetics
17.
Cancer Immunol Res ; 10(2): 259-271, 2022 02.
Article in English | MEDLINE | ID: mdl-35045973

ABSTRACT

Human papillomavirus (HPV) infection causes 600,000 new cancers worldwide each year. HPV-related cancers express the oncogenic proteins E6 and E7, which could serve as tumor-specific antigens. It is not known whether immunity to E6 and E7 evolves during chemoradiotherapy or affects survival. Using T cells from 2 HPV16+ patients, we conducted functional T-cell assays to identify candidate HPV-specific T cells and common T-cell receptor motifs, which we then analyzed across 86 patients with HPV-related cancers. The HPV-specific clones and E7-related T-cell receptor motifs expanded in the tumor microenvironment over the course of treatment, whereas non-HPV-specific T cells did not. In HPV16+ patients, improved recurrence-free survival was associated with HPV-responsive T-cell expansion during chemoradiotherapy.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Chemoradiotherapy , Female , Human papillomavirus 16 , Humans , Papillomavirus E7 Proteins , Prognosis , Repressor Proteins , T-Lymphocytes , Tumor Microenvironment
18.
J Bacteriol ; 193(18): 5009-10, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21742869

ABSTRACT

Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of ∼6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Pseudomonas fluorescens/genetics , Sequence Analysis, DNA , Genes, Reporter , Genetic Engineering , Genomic Islands , Luciferases/genetics , Luciferases/metabolism , Molecular Sequence Data , Plasmids , Polycyclic Aromatic Hydrocarbons/metabolism , Prophages/genetics , Pseudomonas fluorescens/metabolism
19.
Clin Cancer Res ; 27(14): 3960-3969, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34011559

ABSTRACT

PURPOSE: Salivary gland carcinomas (SGCs) are pathologically classified into several widely diverse subtypes, of which adenoid cystic carcinoma (ACC), mucoepidermoid carcinoma (MEC), and salivary duct carcinoma (SDC) are the most commonly encountered. A comparative genetic analysis of these subtypes provides detailed information on the genetic alterations that are associated with their tumorigenesis and may lead to the identification of biomarkers to guide tumor-specific clinical trials. EXPERIMENTAL DESIGN: Whole-genome sequencing of 58 common SGCs (20 ACCs, 20 SDCs, and 18 MECs) was performed to catalog structural variations, copy number, rearrangements, and driver mutations. Data were bioinformatically analyzed and correlated with clinicopathologic parameters, and selected targets were validated. RESULTS: Novel and recurrent type-specific and shared genetic alterations were identified within and among 3 subtypes. Mutually exclusive canonical fusion and nonfusion genomic alterations were identified in both ACC and MEC. In ACCs, loss of chromosome 12q was dominant in MYB or MYBL1 fusion-positive tumors and mutations of NOTCH pathway were more common in these fusion negatives. In MECs, CRTC1-MAML2 fusion-positive tumors showed frequent BAP1 mutation, and tumors lacking this fusion were enriched with LRFN1 mutation. SDCs displayed considerable genetic instability, lacked recurrent chromosomal rearrangements, and demonstrated nonoverlapping TP53 mutation and ERBB2 amplification in a subset of tumors. Limited genetic alterations, including focal amplifications of 8q21-q23, were shared by all subtypes and were associated with poor survival. CONCLUSIONS: This study delineates type-specific and shared genetic alterations that are associated with early phenotypic commitment and the biologic progression of common SGCs. These alterations, upon validation, could serve as biomarkers in tumor-specific clinical trials.


Subject(s)
Carcinoma, Adenoid Cystic/genetics , Carcinoma, Ductal/genetics , Carcinoma, Mucoepidermoid/genetics , Mutation , Salivary Gland Neoplasms/genetics , Whole Genome Sequencing , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Female , Humans , Male , Middle Aged , Salivary Gland Neoplasms/classification , Young Adult
20.
Clin Cancer Res ; 27(3): 852-864, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33172898

ABSTRACT

PURPOSE: Salivary gland adenoid cystic carcinoma (ACC) has heterogeneous clinical behavior. Currently, all patients are treated uniformly, and no standard-of-care systemic therapy exists for metastatic ACC. We conducted an integrated proteogenomic analyses of ACC tumors to identify dysregulated pathways and propose a classification with therapeutic implications. EXPERIMENTAL DESIGN: RNA/DNA sequencing of 54 flash-frozen salivary ACCs and reverse phase protein array (RPPA) in 38 specimens were performed, with validation by Western blotting and/or IHC. Three independent ACC cohorts were used for validation. RESULTS: Both unbiased RNA sequencing (RNA-seq) and RPPA analysis revealed two molecular subtypes: ACC-I (37%) and ACC-II (63%). ACC-I had strong upregulation of MYC, MYC target genes, and mRNA splicing, enrichment of NOTCH-activating mutations, and dramatically worse prognosis. ACC-II exhibited upregulation of TP63 and receptor tyrosine kinases (AXL, MET, and EGFR) and less aggressive clinical course. TP63 and MYC were sufficient to assign tumors to ACC subtypes, which was validated in one independent cohort by IHC and two additional independent cohorts by RNA-seq. Furthermore, IHC staining for MYC and P63 protein levels can be used to identify ACC subtypes, enabling rapid clinical deployment to guide therapeutic decisions. Our data suggest a model in which ACC-I is driven by MYC signaling through either NOTCH mutations or direct amplification, which in turn suppress P63 signaling observed in ACC-II, producing unique therapeutic vulnerabilities for each subtype. CONCLUSIONS: Cooccurrence of multiple actionable protein/pathways alterations in each subtype indicates unique therapeutic vulnerabilities and opportunities for optimal combination therapy for this understudied and heterogeneous disease.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Biomarkers, Tumor/genetics , Carcinoma, Adenoid Cystic/diagnosis , Salivary Gland Neoplasms/diagnosis , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/antagonists & inhibitors , Carcinoma, Adenoid Cystic/drug therapy , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/pathology , Cohort Studies , Female , Humans , Male , Middle Aged , Molecular Targeted Therapy/methods , Mutation , Proteogenomics , RNA-Seq , Salivary Gland Neoplasms/drug therapy , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/pathology , Salivary Glands/pathology , Up-Regulation , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL