ABSTRACT
The use of plant genetic resources (PGR)-wild relatives, landraces, and isolated breeding gene pools-has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end-use quality, and grain yield. In the Global South, post-Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared. Without PGR-derived disease resistance, fungicide use would have easily doubled, massively increasing selection pressure for fungicide resistance. It is estimated that in wheat, a billion liters of fungicide application have been avoided just since 2000. This review presents examples of successful use of PGR including the relentless battle against wheat rust epidemics/pandemics, defending against diseases that jump species barriers like blast, biofortification giving nutrient-dense varieties and the use of novel genetic variation for improving polygenic traits like climate resilience. Crop breeding genepools urgently need to be diversified to increase yields across a range of environments (>200 Mha globally), under less predictable weather and biotic stress pressure, while increasing input use efficiency. Given that the ~0.8 m PGR in wheat collections worldwide are relatively untapped and massive impacts of the tiny fraction studied, larger scale screenings and introgression promise solutions to emerging challenges, facilitated by advanced phenomic and genomic tools. The first translocations in wheat to modify rhizosphere microbiome interaction (reducing biological nitrification, reducing greenhouse gases, and increasing nitrogen use efficiency) is a landmark proof of concept. Phenomics and next-generation sequencing have already elucidated exotic haplotypes associated with biotic and complex abiotic traits now mainstreamed in breeding. Big data from decades of global yield trials can elucidate the benefits of PGR across environments. This kind of impact cannot be achieved without widescale sharing of germplasm and other breeding technologies through networks and public-private partnerships in a pre-competitive space.
Subject(s)
Food Security , Plant Breeding , Plant Diseases , Triticum , Triticum/genetics , Triticum/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Disease Resistance/genetics , Pandemics , Fungicides, Industrial , EnvironmentABSTRACT
Active nitrifiers and rapid nitrification are major contributing factors to nitrogen losses in global wheat production. Suppressing nitrifier activity is an effective strategy to limit N losses from agriculture. Production and release of nitrification inhibitors from plant roots is termed "biological nitrification inhibition" (BNI). Here, we report the discovery of a chromosome region that controls BNI production in "wheat grass" Leymus racemosus (Lam.) Tzvelev, located on the short arm of the "Lr#3Nsb" (Lr#n), which can be transferred to wheat as T3BL.3NsbS (denoted Lr#n-SA), where 3BS arm of chromosome 3B of wheat was replaced by 3NsbS of L. racemosus We successfully introduced T3BL.3NsbS into the wheat cultivar "Chinese Spring" (CS-Lr#n-SA, referred to as "BNI-CS"), which resulted in the doubling of its BNI capacity. T3BL.3NsbS from BNI-CS was then transferred to several elite high-yielding hexaploid wheat cultivars, leading to near doubling of BNI production in "BNI-MUNAL" and "BNI-ROELFS." Laboratory incubation studies with root-zone soil from field-grown BNI-MUNAL confirmed BNI trait expression, evident from suppression of soil nitrifier activity, reduced nitrification potential, and N2O emissions. Changes in N metabolism included reductions in both leaf nitrate, nitrate reductase activity, and enhanced glutamine synthetase activity, indicating a shift toward ammonium nutrition. Nitrogen uptake from soil organic matter mineralization improved under low N conditions. Biomass production, grain yields, and N uptake were significantly higher in BNI-MUNAL across N treatments. Grain protein levels and breadmaking attributes were not negatively impacted. Wide use of BNI functions in wheat breeding may combat nitrification in high N input-intensive farming but also can improve adaptation to low N input marginal areas.
Subject(s)
Agriculture/methods , Chromosomes, Plant/genetics , Crops, Agricultural/growth & development , Nitrification , Nitrogen/metabolism , Plant Proteins/metabolism , Triticum/growth & development , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Triticum/genetics , Triticum/metabolismABSTRACT
Despite being the world's most widely grown crop, research investments in wheat (Triticum aestivum and Triticum durum) fall behind those in other staple crops. Current yield gains will not meet 2050 needs, and climate stresses compound this challenge. However, there is good evidence that heat and drought resilience can be boosted through translating promising ideas into novel breeding technologies using powerful new tools in genetics and remote sensing, for example. Such technologies can also be applied to identify climate resilience traits from among the vast and largely untapped reserve of wheat genetic resources in collections worldwide. This review describes multi-pronged research opportunities at the focus of the Heat and Drought Wheat Improvement Consortium (coordinated by CIMMYT), which together create a pipeline to boost heat and drought resilience, specifically: improving crop design targets using big data approaches; developing phenomic tools for field-based screening and research; applying genomic technologies to elucidate the bases of climate resilience traits; and applying these outputs in developing next-generation breeding methods. The global impact of these outputs will be validated through the International Wheat Improvement Network, a global germplasm development and testing system that contributes key productivity traits to approximately half of the global wheat-growing area.
Subject(s)
Plant Breeding , Triticum , Climate , Droughts , Translational Research, Biomedical , Triticum/geneticsABSTRACT
Synthetic nitrification inhibitors (SNI) and biological nitrification inhibitors (BNI) are promising tools to limit nitrogen (N) pollution derived from agriculture. Modern wheat cultivars lack sufficient capacity to exude BNIs, but, fortunately, the chromosome region (Lr#n-SA) controlling BNI production in Leymus racemosus, a wild relative of wheat, was introduced into two elite wheat cultivars, ROELFS and MUNAL. Using BNI-isogenic-lines could become a cost-effective, farmer-friendly, and globally scalable technology that incentivizes more sustainable and environmentally friendly agronomic practices. We studied how BNI-trait improves N-uptake, and N-use, both with ammonium and nitrate fertilization, analysing representative indicators of soil nitrification inhibition, and plant metabolism. Synthesizing BNI molecules did not mean a metabolic cost since Control and BNI-isogenic-lines from ROELFS and MUNAL presented similar agronomic performance and plant development. In the soil, ROELFS-BNI and MUNAL-BNI plants decreased ammonia-oxidizing bacteria (AOB) abundance by 60% and 45% respectively, delaying ammonium oxidation without reducing the total abundance of bacteria or archaea. Interestingly, BNI-trait presented a synergistic effect with SNIs since made it also possible to decrease the AOA abundance. ROELFS-BNI and MUNAL-BNI plants showed a reduced leaf nitrate reductase (NR) activity as a consequence of lower soil NO 3 - formation and a higher amino acid content compared to BNI-trait lacking lines, indicating that the transfer of Lr#-SA was able to induce a higher capacity to assimilate ammonium. Moreover, the impact of the BNI-trait in wheat cultivars was also noticeable for nitrate fertilization, with improved N absorption, and therefore, reducing soil nitrate content.
ABSTRACT
Biological Nitrification Inhibition (BNI) of Brachiaria humidicola has been mainly attributed to the root-exuded fusicoccane-type diterpene brachialactone. We hypothesized, however, that according to the high diversity of fusicoccanes described for plants and microorganisms, BNI of B. humidicola is caused by an assemblage of bioactive fusicoccanes. B. humidicola root exudates were collected hydroponically and compounds isolated by semi-preparative HPLC. Chemical structures were revealed by spectroscopic techniques, including HRMS as well as 1D and 2D NMR. Nitrification inhibiting (NI) potential of isolated compounds was evaluated by a Nitrosomonas europaea based bioassay. Besides the previously described brachialactone (1), root exudates contained 3-epi-brachialactone (2), the C3-epimer of 1 (m/z 334), as well as 16-hydroxy-3-epi-brachialactone (3) with an additional hydroxyl group at C16 (m/z 350) and 3,18-epoxy-9-hydroxy-4,7-seco-brachialactone (4), which is a ring opened brachialactone derivative with a 3,18 epoxide ring and a hydroxyl group at C9 (m/z 332). The 3-epi-brachialactone (2) showed highest NI activity (ED50 ~ 20 µg mL-1, ED80 ~ 40 µg mL-1), followed by compound 4 with intermediate (ED50 ~ 40 µg mL-1), brachialactone (1) with low and compound 3 without activity. In coherence with previous reports on fusicoccanes, stereochemistry at C3 was of high relevance for the biological activity (NI potential) of brachialactones.
Subject(s)
Brachiaria/chemistry , Lactones/chemistry , Nitrification , Plant Exudates/chemistry , Nitrosomonas europaea , Plant RootsABSTRACT
The tropical forage grass Brachiaria humidicola (Bh) controls soil microbial nitrification via biological nitrification inhibition (BNI). The aim of our study was to verify if nitrate reductase activity (NRA) in Bh roots or leaves reflects in vivo performance of BNI in soils. NRA was measured in roots and leaves of contrasting accessions and apomictic hybrids of Bh grown under controlled greenhouse and natural field conditions. Nitrate (NO3-) contents were measured in soil solution and in Bh stem sap to validate NRA data. Potential soil nitrification rates (NRs) and leaf δ15N values were used to verify in vivo BNI by the NRA assay in the field study. NRA was detected in Bh leaves rather than roots, regardless of NO3- availability. NRA correlated with NO3- contents in soils and stem sap of contrasting Bh genotypes substantiating its reflectance of in vivo BNI performance. Additionally, leaf NRA data from the field study significantly correlated with simultaneously collected NRs and leaf δ15N data. The leaf NRA assay facilitated a rapid screening of contrasting Bh genotypes for their differences in in vivo performance of BNI under field and greenhouse conditions, but inconsistency of the BNI potential by Bh germplasm was observed. Among Bh genotypes tested, leaf NRA was closely linked with nitrification activity, and consequently with actual BNI performance. It was concluded that NRA in leaves of Bh can serve as an indicator of in vivo BNI activity when complemented with established BNI methodologies (δ15N, NRs) under greenhouse and field conditions.
Subject(s)
Brachiaria/metabolism , Nitrate Reductase/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Soil/chemistry , Brachiaria/genetics , Fertilizers , Genotype , Germany , Nitrates/analysis , Nitrates/metabolism , Nitrification , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Plant Roots/metabolismABSTRACT
The tropical forage grass Brachiaria humidicola (Bh) suppresses the activity of soil nitrifiers through biological nitrification inhibition (BNI). As a result, nitrate ( NO 3 - ) formation and leaching are reduced which is also expected to tighten the soil nitrogen (N) cycle. However, the beneficial relationship between reduced NO 3 - losses and enhanced N uptake due to BNI has not been experimentally demonstrated yet. Nitrification discriminates against the 15N isotope and leads to 15N depleted NO 3 - , but 15N enriched NH 4 + in soils. Leaching of 15N depleted NO 3 - enriches the residual N pool in the soil with 15N. We hypothesized that altered nitrification and NO 3 - leaching due to diverging BNI magnitudes in contrasting Bh genotypes influence soil 15N natural abundance (δ15N), which in turn is reflected in distinct δ15N in Bh shoot biomass. Consequently, high BNI was expected to be reflected in low plant δ15N of Bh. It was our objective to investigate under controlled conditions the link between shoot value of δ15N in several Bh genotypes and leached NO 3 - amounts and shoot N uptake. Additionally, plant 15N and N% was monitored among a wide range of Bh genotypes with contrasting BNI potentials in field plots for 3 years. We measured leaf δ15N of young leaves (regrown after cutback) of Bh and combined it with nitrification rates (NRs) of incubated soil to test whether there is a direct relationship between plant δ15N and BNI. Increased leached NO 3 - was positively correlated with higher δ15N in Bh, whereas the correlation between shoot N uptake and shoot δ15N was inverse. Field cultivation of a wide range of Bh genotypes over 3 years decreased NRs in incubated soil, while shoot δ15N declined and shoot N% increased over time. Leaf δ15N of Bh genotypes correlated positively with NRs of incubated soil. It was concluded that decreasing plant δ15N of Bh genotypes over time reflects the long-term effect of BNI as linked to lower NO 3 - formation and reduced NO 3 - leaching. Accordingly, a low δ15N in Bh shoot tissue verified its potential as indicator of high BNI activity of Bh genotypes.