Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mar Drugs ; 22(7)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39057410

ABSTRACT

Omega-3 fatty acids are essential fatty acids that are not synthesised by the human body and have been linked with the prevention of chronic illnesses such as cardiovascular and neurodegenerative diseases. However, the current dietary habits of the majority of the population include lower omega-3 content compared to omega-6, which does not promote good health. To overcome this, pharmaceutical and nutraceutical companies aim to produce omega-3-fortified foods. For this purpose, various approaches have been employed to obtain omega-3 concentrates from sources such as fish and algal oil with higher amounts of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Among these techniques, enzymatic enrichment using lipase enzymes has gained tremendous interest as it is low in capital cost and simple in operation. Microorganism-derived lipases are preferred as they are easily produced due to their higher growth rate, and they hold the ability to be manipulated using genetic modification. This review aims to highlight the recent studies that have been carried out using marine lipases for the enrichment of omega-3, to provide insight into future directions. Overall, the covalent bond-based lipase immobilization to various support materials appears most promising; however, greener and less expensive options need to be strengthened.


Subject(s)
Aquatic Organisms , Dietary Supplements , Fatty Acids, Omega-3 , Lipase , Lipase/metabolism , Lipase/chemistry , Fatty Acids, Omega-3/chemistry , Humans , Animals , Fish Oils/chemistry
2.
Plants (Basel) ; 10(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34685991

ABSTRACT

The signaling role for γ-Aminobutyric acid (GABA) has been documented in animals for over seven decades. However, a signaling role for GABA in plants is just beginning to emerge with the discovery of putative GABA binding site/s and GABA regulation of anion channels. In this review, we explore the role of GABA in plant growth and development under abiotic stress, its interactions with other signaling molecules and the probability that there are other anion channels with important roles in stress tolerance that are gated by GABA.

SELECTION OF CITATIONS
SEARCH DETAIL