Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Biotechnol Bioeng ; 121(11): 3600-3613, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39082734

ABSTRACT

Type 1 diabetes (T1D) prevention is currently limited by the lack of diagnostic tools able to identify disease before autoimmune destruction of the pancreatic ß cells. Autoantibody tests are used to predict risk and, in combination with glucose dysregulation indicative of ß cell loss, to determine administration of immunotherapies. Our objective was to remotely identify immune changes associated with the disease, and we have employed a subcutaneously implanted microporous poly(e-caprolactone) (PCL) scaffold to function as an immunological niche (IN) in two models of T1D. Biopsy and analysis of the IN enables disease monitoring using transcriptomic changes at a distal site from autoimmune destruction of the pancreas, thereby gaining cellular level information about disease without the need for a biopsy of the native organ. Using this approach, we identified gene signatures that stratify healthy and diseased mice in both an adoptive transfer model and a spontaneous onset model of T1D. The gene signatures identified herein demonstrate the ability of the IN to identify immune activation associated with diabetes across models.


Subject(s)
Diabetes Mellitus, Type 1 , Polyesters , Tissue Scaffolds , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Animals , Mice , Polyesters/chemistry , Tissue Scaffolds/chemistry , Disease Models, Animal , Pancreas/pathology , Pancreas/metabolism , Mice, Inbred NOD
2.
Int J Mol Sci ; 23(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35008431

ABSTRACT

The substantial biological heterogeneity of metastatic prostate cancer has hindered the development of personalized therapeutic approaches. Therefore, it is difficult to predict the course of metastatic hormone-sensitive prostate cancer (mHSPC), with some men remaining on first-line androgen deprivation therapy (ADT) for several years while others progress more rapidly. Improving our ability to risk-stratify patients would allow for the optimization of systemic therapies and support the development of stratified prospective clinical trials focused on patients likely to have the greatest potential benefit. Here, we applied a liquid biopsy approach to identify clinically relevant, blood-based prognostic biomarkers in patients with mHSPC. Gene expression indicating the presence of CTCs was greater in CHAARTED high-volume (HV) patients (52% CTChigh) than in low-volume (LV) patients (23% CTChigh; * p = 0.03). HV disease (p = 0.005, q = 0.033) and CTC presence at baseline prior to treatment initiation (p = 0.008, q = 0.033) were found to be independently associated with the risk of nonresponse at 7 months. The pooled gene expression from CTCs of pre-ADT samples found AR, DSG2, KLK3, MDK, and PCA3 as genes predictive of nonresponse. These observations support the utility of liquid biomarker approaches to identify patients with poor initial response. This approach could facilitate more precise treatment intensification in the highest risk patients.


Subject(s)
Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm , Gene Expression Profiling/methods , Neoplastic Cells, Circulating/chemistry , Prostatic Neoplasms/genetics , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Antigens, Neoplasm/genetics , Desmoglein 2/genetics , Humans , Kallikreins/genetics , Male , Midkine/genetics , Multiplex Polymerase Chain Reaction , Precision Medicine , Prognosis , Prospective Studies , Prostate-Specific Antigen/genetics , Prostatic Neoplasms/drug therapy , Receptors, Androgen/genetics
3.
Anal Bioanal Chem ; 406(28): 7233-42, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25240934

ABSTRACT

A combined setup of quartz crystal microbalance and generalized ellipsometry can be used to comprehensively investigate complex functional coatings comprising stimuli-responsive polymer brushes and 3D nanostructures in a dynamic, noninvasive in situ measurement. While the quartz crystal microbalance detects the overall change in areal mass, for instance, during a swelling or adsorption process, the generalized ellipsometry data can be evaluated in terms of a layered model to distinguish between processes occurring within the intercolumnar space or on top of the anisotropic nanocolumns. Silicon films with anisotropic nanocolumnar morphology were prepared by the glancing angle deposition technique and further functionalized by grafting of poly-(acrylic acid) or poly-(N- isopropylacrylamide) chains. Investigations of the thermoresponsive swelling of the poly-(N-isopropylacrylamide) brush on the Si nanocolumns proved the successful preparation of a stimuli-responsive coating. Furthermore, the potential of these novel coatings in the field of biotechnology was explored by investigation of the adsorption of the model protein bovine serum albumin. Adsorption, retention, and desorption triggered by a change in the pH value is observed using poly-(acrylic acid) functionalized nanostructures, although generalized ellipsometry data revealed that this process occurs only on top of the nanostructures. Poly-(N-isopropylacrylamide) is found to render the nanostructures non-fouling properties.


Subject(s)
Nanostructures/chemistry , Polymers/chemistry , Quartz Crystal Microbalance Techniques/methods , Serum Albumin, Bovine/chemistry , Silicon/chemistry , Animals , Cattle , Refractometry , Surface Properties
4.
Opt Express ; 20(5): 5419-28, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418349

ABSTRACT

We apply generalized ellipsometry, well-known to be sensitive to the optical properties of anisotropic materials, to determine the amount of fibronectin protein that adsorbs onto a Ti slanted columnar thin film from solution. We find that the anisotropic optical properties of the thin film change upon organic adsorption. An optical model for ellipsometry data analysis incorporates an anisotropic Bruggeman effective medium approximation. We find that differences in experimental data from before and after fibronectin adsorption can be solely attributable to the uptake of fibronectin within the slanted columnar thin film. Simultaneous, in-situ generalized ellipsometry and quartz crystal microbalance measurements show excellent agreement on the amount and rate of fibronectin adsorption. Quantitative characterization of organic materials within three-dimensional, optically anisotropic slanted columnar thin films could permit their use in optical sensor applications.


Subject(s)
Biosensing Techniques/instrumentation , Fibronectins/analysis , Membranes, Artificial , Refractometry/instrumentation , Adsorption , Equipment Design , Equipment Failure Analysis
5.
Thromb Res ; 200: 64-71, 2021 04.
Article in English | MEDLINE | ID: mdl-33540294

ABSTRACT

INTRODUCTION: Despite the great promise for therapies using antisense oligonucleotides (ASOs), their adverse effects, which include pro-inflammatory effects and thrombocytopenia, have limited their use. Previously, these effects have been linked to the phosphorothioate (PS) backbone necessary to prevent rapid ASO degradation in plasma. The main aim of this study was to assess the impact of the nucleic acid portion of an ASO-type drug on platelets and determine if it may contribute to thrombosis or thrombocytopenia. METHODS: Platelets were isolated from healthy donors and men with advanced prostate cancer. Effects of antisense oligonucleotides (ASO), oligonucleotides, gDNA, and microRNA on platelet activation and aggregation were evaluated. A mouse model of lung thrombosis was used to confirm the effects of PS-modified oligonucleotides in vivo. RESULTS: Platelet exposure to gDNA, miRNA, and oligonucleotides longer than 16-mer at a concentration above 8 mM resulted in the formation of hypersensitive platelets, characterized by an increased sensitivity to low-dose thrombin (0.1 nM) and increase in p-Selectin expression (6-8 fold greater than control; p < 0.001). The observed nucleic acid (NA) effects on platelets were toll-like receptor (TLR) -7 subfamily dependent. Injection of a p-Selectin inhibitor significantly (p = 0.02) reduced the formation of oligonucleotide-associated pulmonary microthrombosis in vivo. CONCLUSION: Our results suggest that platelet exposure to nucleic acids independent of the presence of a PS modification leads to a generation of hypersensitive platelets and requires TLR-7 subfamily receptors. ASO studies conducted in cancer patients may benefit from testing the ASO effects on platelets ex vivo before initiation of patient treatment.


Subject(s)
Nucleic Acids , Pharmaceutical Preparations , Animals , Blood Platelets , Humans , Mice , Oligonucleotides, Antisense , Phosphorothioate Oligonucleotides
7.
Biomaterials ; 234: 119757, 2020 03.
Article in English | MEDLINE | ID: mdl-31951973

ABSTRACT

Tissues derived from human pluripotent stem cells (hPSCs) often represent early stages of fetal development, but mature at the molecular and structural level when transplanted into immunocompromised mice. hPSC-derived lung organoids (HLOs) transplantation has been further enhanced with biomaterial scaffolds, where HLOs had improved tissue structure and cellular differentiation. Here, our goal was to define the physico-chemical biomaterial properties that maximally enhanced transplant efficiency, including features such as the polymer type, degradation, and pore interconnectivity of the scaffolds. We found that transplantation of HLOs on microporous scaffolds formed from poly (ethylene glycol) (PEG) hydrogel scaffolds inhibit growth and maturation, and the transplanted HLOs possessed mostly immature lung progenitors. On the other hand, HLOs transplanted on poly (lactide-co-glycolide) (PLG) scaffolds or polycaprolactone (PCL) led to tube-like structures that resembled both the structure and cellular diversity of an adult airway. Our data suggests that scaffold pore interconnectivity and polymer degradation contributed to the maturation, and we found that the size of the airway structures and the total size of the transplanted tissue was influenced by the material degradation rate. Collectively, these biomaterial platforms provide a set of tools to promote maturation of the tissues and to control the size and structure of the organoids.


Subject(s)
Organoids , Pluripotent Stem Cells , Adult , Animals , Biocompatible Materials , Humans , Hydrogels , Infant, Newborn , Lung , Mice , Tissue Engineering , Tissue Scaffolds
8.
Transl Oncol ; 13(4): 100747, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32217460

ABSTRACT

Wnt signaling has been implicated as a driver of prostate cancer-related osteoblast differentiation, and previous studies have linked modifications in Wnt function with the induction of tumor metastasis. A unique aspect of prostate cancer bone metastases in mouse models is their relative predilection to the hindlimb (femur) compared to the forelimb (humerus). Comparative gene expression profiling was performed within the humerus and femur from non-tumor-bearing mice to evaluate differences in the microenvironments of these locations. This revealed the relative overexpression of the Wnt signaling inhibitors WIF1 and SOST in the humerus compared to the femur, with increased WNT5A expression in femur bone marrow, suggesting a coordinated upregulation of Wnt signals within the femur compared to the humerus. Conditioned medium (CM) from bone marrow stromal cells (HS-5 cells) was used to mimic the bone marrow microenvironment, which strongly promoted prostate cancer cell invasion (3.3-fold increase in PC3 cells, P < .05; 7-fold increase in LNCaP cells, P < .05). WNT5A shRNA knockdown within the CM-producing HS-5 cells significantly decreased PC3 (56%, P < .05) and LNCaP (60%, P < .05) cell invasion. Similarly, preincubation of CM with WIF1 significantly blocked LNCaP cell invasion (40%, P < .05). shRNA-mediated knockdown of the Wnt receptors FZD4 and FZD8 also strongly inhibited tumor cell invasion (60% inhibition shFZD4, P < .05; 63% shFZD8, P < .05). Furthermore, small molecule inhibition of JNK, which is an important component of the noncanonical Wnt signaling pathway, significantly inhibited CM-mediated tumor invasion. Overall, this study reveals a role for Wnt signaling as a driver of prostate cancer bone metastatic tropism and invasion.

9.
ACS Biomater Sci Eng ; 4(5): 1770-1778, 2018 May 14.
Article in English | MEDLINE | ID: mdl-30345348

ABSTRACT

Type I diabetes mellitus, which affects an estimated 1.5 million Americans, is caused by autoimmune destruction of the pancreatic beta cells that results in the need for life-long insulin therapy. Allogeneic islet transplantation for the treatment of type I diabetes is a therapy in which donor islets are infused intrahepatically, which has led to the transient reversal of diabetes. However, therapeutic limitations of allogeneic transplantation, which include a shortage of donor islets, long-term immunosuppression, and high risk of tissue rejection, have led to the investigation of embryonic or induced pluripotent stem cells as an unlimited source of functional beta-cells. Herein, we investigate the use of microporous scaffolds for their ability to promote the engraftment of stem cell derived pancreatic progenitors and their maturation toward mono-hormonal insulin producing ß-cells at a clinically translatable, extrahepatic site. Initial studies demonstrated that microporous scaffolds supported cell engraftment, and their maturation to become insulin positive; however, the number of insulin positive cells and the levels of C-peptide secretion were substantially lower than what was observed with progenitor cell transplantation into the kidney capsule. The scaffolds were subsequently modified to provide a sustained release of exendin-4, which has previously been employed to promote maturation of pancreatic progenitors in vitro and has been employed to promote engraftment of transplanted islets in the peritoneal fat. Transplantation of stem cell derived pancreatic progenitors on scaffolds releasing exendin-4 led to significantly increased C-peptide production compared to scaffolds without exendin-4, with C-peptide and blood glucose levels comparable to the kidney capsule transplantation cohort. Image analysis of insulin and glucagon producing cells indicated that monohormonal insulin producing cells were significantly greater compared to glucagon producing and polyhormonal cells in scaffolds releasing exendin-4, whereas a significantly decreased percentage of insulin-producing cells were present among hormone producing cells in scaffolds without exendin-4. Collectively, a microporous scaffold, capable of localized and sustained delivery of exendin-4, enhanced the maturation and function of pluripotent stem cell derived pancreatic progenitors that were transplanted to a clinically translatable site.

10.
Acta Biomater ; 18: 88-99, 2015 May.
Article in English | MEDLINE | ID: mdl-25712389

ABSTRACT

Sculptured thin film (STF) substrates consist of nanocolumns with precise orientation, intercolumnar spacing, and optical anisotropy, which can be used as model biomaterial substrates to study the effect of homogenous nanotopogrophies on the three-dimensional distribution of adsorbed proteins. Generalized ellipsometry was used to discriminate between the distributions of adsorbed FN either on top of or within the intercolumnar void spaces of STFs, afforded by the optical properties of these precisely crafted substrates. Generalized ellipsometry indicated that STFs with vertical nanocolumns enhanced total FN adsorption two-fold relative to flat control substrates and the FN adsorption studies demonstrate different STF characteristics influence the degree of FN immobilization both on top and within intercolumnar spaces, with increasing spacing and surface area enhancing total protein adsorption. Mouse fibroblasts or mouse mesenchymal stem cells were subsequently cultured on STFs, to investigate the effect of highly ordered and defined nanotopographies on cell adhesion, spreading, and proliferation. All STF nanotopographies investigated in the absence of adsorbed FN were found to significantly enhance cell adhesion relative to flat substrates; and the addition of FN to STFs was found to have cell-dependent effects on enhancing cell-material interactions. Furthermore, the amount of FN adsorbed to the STFs did not correlate with comparative enhancements of cell-material interactions, suggesting that nanotopography predominantly contributes to the biocompatibility of homogenous nanocolumnar surfaces. This is the first study to correlate precisely defined nanostructured features with protein distribution and cell-nanomaterial interactions. STFs demonstrate immense potential as biomaterial surfaces for applications in tissue engineering, drug delivery, and biosensing.


Subject(s)
Fibroblasts/cytology , Fibronectins/pharmacology , Nanostructures/chemistry , Adsorption , Animals , Biocompatible Materials/pharmacology , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Fibroblasts/drug effects , Humans , Mice , Microscopy, Fluorescence , NIH 3T3 Cells , Nanostructures/ultrastructure , Quartz Crystal Microbalance Techniques
11.
J Biol Eng ; 6(1): 17, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22967455

ABSTRACT

BACKGROUND: Gene delivery approaches serve as a platform to modify gene expression of a cell population with applications including functional genomics, tissue engineering, and gene therapy. The delivery of exogenous genetic material via nonviral vectors has proven to be less toxic and to cause less of an immune response in comparison to viral vectors, but with decreased efficiency of gene transfer. Attempts have been made to improve nonviral gene transfer efficiency by modifying physicochemical properties of gene delivery vectors as well as developing new delivery techniques. In order to further improve and understand nonviral gene delivery, our approach focuses on the cell-material interface, since materials are known to modulate cell behavior, potentially rendering cells more responsive to nonviral gene transfer. In this study, self-assembled monolayers of alkanethiols on gold were employed as model biomaterial interfaces with varying surface chemistries. NIH/3T3 mouse fibroblasts were seeded on the modified surfaces and transfected using either lipid- or polymer- based complexing agents. RESULTS: Transfection was increased in cells on charged hydrophilic surfaces presenting carboxylic acid terminal functional groups, while cells on uncharged hydrophobic surfaces presenting methyl terminations demonstrated reduced transfection for both complexing agents. Surface-induced cellular characteristics that were hypothesized to affect nonviral gene transfer were subsequently investigated. Cells on charged hydrophilic surfaces presented higher cell densities, more cell spreading, more cells with ellipsoid morphologies, and increased quantities of focal adhesions and cytoskeleton features within cells, in contrast to cell on uncharged hydrophobic surfaces, and these cell behaviors were subsequently correlated to transfection characteristics. CONCLUSIONS: Extracellular influences on nonviral gene delivery were investigated by evaluating the upregulation and downregulation of transgene expression as a function of the cell behaviors induced by changes in the cells' microenvronments. This study demonstrates that simple surface modifications can lead to changes in the efficiency of nonviral gene delivery. In addition, statistically significant differences in various surface-induced cell characteristics were statistically correlated to transfection trends in fibroblasts using both lipid and polymer mediated DNA delivery approaches. The correlations between the evaluated complexing agents and cell behaviors (cell density, spreading, shape, cytoskeleton, focal adhesions, and viability) suggest that polymer-mediated transfection is correlated to cell morphological traits while lipid-mediated transfection correlates to proliferative characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL