Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180486

ABSTRACT

Microsatellite unstable colorectal cancer (MSI-CRC) can arise through germline mutations in mismatch repair (MMR) genes in individuals with Lynch syndrome (LS), or sporadically through promoter methylation of the MMR gene MLH1. Despite the different origins of hereditary and sporadic MSI tumours, their genomic features have not been extensively compared. A prominent feature of MMR-deficient genomes is the occurrence of many indels in short repeat sequences, an understudied mutation type due to the technical challenges of variant calling in these regions. In this study, we performed whole genome sequencing and RNA-sequencing on 29 sporadic and 14 hereditary MSI-CRCs. We compared the tumour groups by analysing genome-wide mutation densities, microsatellite repeat indels, recurrent protein-coding variants, signatures of single base, doublet base, and indel mutations, and changes in gene expression. We show that the mutational landscapes of hereditary and sporadic MSI-CRCs, including mutational signatures and mutation densities genome-wide and in microsatellites, are highly similar. Only a low number of differentially expressed genes were found, enriched to interferon-γ regulated immune response pathways. Analysis of the variance in allelic fractions of somatic variants in each tumour group revealed higher clonal heterogeneity in sporadic MSI-CRCs. Our results suggest that the differing molecular origins of MMR deficiency in hereditary and sporadic MSI-CRCs do not result in substantial differences in the mutational landscapes of these tumours. The divergent patterns of clonal evolution between the tumour groups may have clinical implications, as high clonal heterogeneity has been associated with decreased tumour immunosurveillance and reduced responsiveness to immunotherapy.

2.
Hum Mol Genet ; 30(24): 2429-2440, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34274970

ABSTRACT

Many hereditary cancer syndromes are associated with an increased risk of small and large intestinal adenocarcinomas. However, conditions bearing a high risk to both adenocarcinomas and neuroendocrine tumors are yet to be described. We studied a family with 16 individuals in four generations affected by a wide spectrum of intestinal tumors, including hyperplastic polyps, adenomas, small intestinal neuroendocrine tumors, and colorectal and small intestinal adenocarcinomas. To assess the genetic susceptibility and understand the novel phenotype, we utilized multiple molecular methods, including whole genome sequencing, RNA sequencing, single cell sequencing, RNA in situ hybridization and organoid culture. We detected a heterozygous deletion at the cystic fibrosis locus (7q31.2) perfectly segregating with the intestinal tumor predisposition in the family. The deletion removes a topologically associating domain border between CFTR and WNT2, aberrantly activating WNT2 in the intestinal epithelium. These consequences suggest that the deletion predisposes to small intestinal neuroendocrine tumors and small and large intestinal adenocarcinomas, and reveals the broad tumorigenic effects of aberrant WNT activation in the human intestine.


Subject(s)
Adenocarcinoma , Adenoma , Colorectal Neoplasms , Neuroendocrine Tumors , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenoma/genetics , Adenoma/pathology , Colorectal Neoplasms/genetics , Humans , Intestinal Mucosa/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Wnt2 Protein
3.
J Med Genet ; 59(7): 644-651, 2022 07.
Article in English | MEDLINE | ID: mdl-34281993

ABSTRACT

BACKGROUND: Genes involved in epigenetic regulation are central for chromatin structure and gene expression. Specific mutations in these might promote carcinogenesis in several tissue types. METHODS: We used exome, whole-genome and Sanger sequencing to detect rare variants shared by seven affected individuals in a striking early-onset multi-cancer family. The only variant that segregated with malignancy resided in a histone demethylase KDM4C. Consequently, we went on to study the epigenetic landscape of the mutation carriers with ATAC, ChIP (chromatin immunoprecipitation) and RNA-sequencing from lymphoblastoid cell lines to identify possible pathogenic effects. RESULTS: A novel variant in KDM4C, encoding a H3K9me3 histone demethylase and transcription regulator, was found to segregate with malignancy in the family. Based on Roadmap Epigenomics Project data, differentially accessible chromatin regions between the variant carriers and controls enrich to normally H3K9me3-marked chromatin. We could not detect a difference in global H3K9 trimethylation levels. However, carriers of the variant seemed to have more trimethylated H3K9 at transcription start sites. Pathway analyses of ChIP-seq and differential gene expression data suggested that genes regulated through KDM4C interaction partner EZH2 and its interaction partner PLZF are aberrantly expressed in mutation carriers. CONCLUSIONS: The apparent dysregulation of H3K9 trimethylation and KDM4C-associated genes in lymphoblastoid cells supports the hypothesis that the KDM4C variant is causative of the multi-cancer susceptibility in the family. As the variant is ultrarare, located in the conserved catalytic JmjC domain and predicted pathogenic by the majority of available in silico tools, further studies on the role of KDM4C in cancer predisposition are warranted.


Subject(s)
Histone Demethylases , Jumonji Domain-Containing Histone Demethylases , Neoplasms , Chromatin/genetics , Epigenesis, Genetic , Germ Cells/metabolism , Germ Cells/pathology , Histone Demethylases/genetics , Histones/genetics , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Neoplasms/genetics , Phenotype
4.
PLoS Genet ; 16(2): e1008572, 2020 02.
Article in English | MEDLINE | ID: mdl-32012149

ABSTRACT

Cancer genomes with mutations in the exonuclease domain of Polymerase Epsilon (POLE) present with an extraordinarily high somatic mutation burden. In vitro studies have shown that distinct POLE mutants exhibit different polymerase activity. Yet, genome-wide mutation patterns and driver mutation formation arising from different POLE mutants remains unclear. Here, we curated somatic mutation calls from 7,345 colorectal cancer samples from published studies and publicly available databases. These include 44 POLE mutant samples including 9 with whole genome sequencing data available. The POLE mutant samples were categorized based on the specific POLE mutation present. Mutation spectrum, associations of somatic mutations with epigenomics features and co-occurrence with specific driver mutations were examined across different POLE mutants. We found that different POLE mutants exhibit distinct mutation spectrum with significantly higher relative frequency of C>T mutations in POLE V411L mutants. Our analysis showed that this increase frequency in C>T mutations is not dependent on DNA methylation and not associated with other genomic features and is thus specifically due to DNA sequence context alone. Notably, we found strong association of the TP53 R213* mutation specifically with POLE P286R mutants. This truncation mutation occurs within the TT[C>T]GA context. For C>T mutations, this sequence context is significantly more likely to be mutated in POLE P286R mutants compared with other POLE exonuclease domain mutants. This study refines our understanding of DNA polymerase fidelity and underscores genome-wide mutation spectrum and specific cancer driver mutation formation observed in POLE mutant cancers.


Subject(s)
Carcinogenesis/genetics , Colorectal Neoplasms/genetics , DNA Polymerase II/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Domains/genetics , Tumor Suppressor Protein p53/genetics , CpG Islands/genetics , Cytosine/metabolism , DNA Methylation/genetics , DNA Mutational Analysis/statistics & numerical data , DNA Polymerase II/genetics , Databases, Genetic/statistics & numerical data , Datasets as Topic , Epigenesis, Genetic , Humans , Mutation , Poly-ADP-Ribose Binding Proteins/genetics , Whole Genome Sequencing/statistics & numerical data
5.
Gastroenterology ; 161(2): 592-607, 2021 08.
Article in English | MEDLINE | ID: mdl-33930428

ABSTRACT

BACKGROUND & AIMS: Inflammatory bowel disease (IBD) is a chronic, relapsing inflammatory disorder associated with an elevated risk of colorectal cancer (CRC). IBD-associated CRC (IBD-CRC) may represent a distinct pathway of tumorigenesis compared to sporadic CRC (sCRC). Our aim was to comprehensively characterize IBD-associated tumorigenesis integrating multiple high-throughput approaches, and to compare the results with in-house data sets from sCRCs. METHODS: Whole-genome sequencing, single nucleotide polymorphism arrays, RNA sequencing, genome-wide methylation analysis, and immunohistochemistry were performed using fresh-frozen and formalin-fixed tissue samples of tumor and corresponding normal tissues from 31 patients with IBD-CRC. RESULTS: Transcriptome-based tumor subtyping revealed the complete absence of canonical epithelial tumor subtype associated with WNT signaling in IBD-CRCs, dominated instead by mesenchymal stroma-rich subtype. Negative WNT regulators AXIN2 and RNF43 were strongly down-regulated in IBD-CRCs and chromosomal gains at HNF4A, a negative regulator of WNT-induced epithelial-mesenchymal transition (EMT), were less frequent compared to sCRCs. Enrichment of hypomethylation at HNF4α binding sites was detected solely in sCRC genomes. PIGR and OSMR involved in mucosal immunity were dysregulated via epigenetic modifications in IBD-CRCs. Genome-wide analysis showed significant enrichment of noncoding mutations to 5'untranslated region of TP53 in IBD-CRCs. As reported previously, somatic mutations in APC and KRAS were less frequent in IBD-CRCs compared to sCRCs. CONCLUSIONS: Distinct mechanisms of WNT pathway dysregulation skew IBD-CRCs toward mesenchymal tumor subtype, which may affect prognosis and treatment options. Increased OSMR signaling may favor the establishment of mesenchymal tumors in patients with IBD.


Subject(s)
Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/genetics , Colitis-Associated Neoplasms/genetics , DNA Methylation , Epigenesis, Genetic , Inflammatory Bowel Diseases/genetics , Transcriptome , Adult , Aged , Aged, 80 and over , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/pathology , Colitis-Associated Neoplasms/immunology , Colitis-Associated Neoplasms/pathology , DNA Mutational Analysis , Epigenomics , Female , Finland , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Male , Middle Aged , Mutation , Neoplasm Grading , Neoplasm Staging , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Sequence Analysis, RNA , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Whole Genome Sequencing
6.
Vascular ; 30(5): 842-847, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34281442

ABSTRACT

BACKGROUND: Visceral artery aneurysms (VAAs) can be fatal if ruptured. Although a relatively rare incident, it holds a contemporary mortality rate of approximately 12%. VAAs have multiple possible causes, one of which is genetic predisposition. Here, we present a striking family with seven individuals affected by VAAs, and one individual affected by a visceral artery pseudoaneurysm. METHODS: We exome sequenced the affected family members and the parents of the proband to find a possible underlying genetic defect. As exome sequencing did not reveal any feasible protein-coding variants, we combined whole-genome sequencing of two individuals with linkage analysis to find a plausible non-coding culprit variant. Variants were ranked by the deep learning framework DeepSEA. RESULTS: Two of seven top-ranking variants, NC_000013.11:g.108154659C>T and NC_000013.11:g.110409638C>T, were found in all VAA-affected individuals, but not in the individual affected by the pseudoaneurysm. The second variant is in a candidate cis-regulatory element in the fourth intron of COL4A2, proximal to COL4A1. CONCLUSIONS: As type IV collagens are essential for the stability and integrity of the vascular basement membrane and involved in vascular disease, we conclude that COL4A1 and COL4A2 are strong candidates for VAA susceptibility genes.


Subject(s)
Aneurysm, False , Aneurysm , Collagen Type IV , Aneurysm/etiology , Arteries , Collagen Type IV/genetics , High-Throughput Nucleotide Sequencing , Humans , Pedigree
7.
Genes Chromosomes Cancer ; 60(7): 463-473, 2021 07.
Article in English | MEDLINE | ID: mdl-33527622

ABSTRACT

Microsatellite instability (MSI) is caused by defective DNA mismatch repair (MMR), and manifests as accumulation of small insertions and deletions (indels) in short tandem repeats of the genome. Another form of repeat instability, elevated microsatellite alterations at selected tetranucleotide repeats (EMAST), has been suggested to occur in 50% to 60% of colorectal cancer (CRC), of which approximately one quarter are accounted for by MSI. Unlike for MSI, the criteria for defining EMAST is not consensual. EMAST CRCs have been suggested to form a distinct subset of CRCs that has been linked to a higher tumor stage, chronic inflammation, and poor prognosis. EMAST CRCs not exhibiting MSI have been proposed to show instability of di- and trinucleotide repeats in addition to tetranucleotide repeats, but lack instability of mononucleotide repeats. However, previous studies on EMAST have been based on targeted analysis of small sets of marker repeats, often in relatively few samples. To gain insight into tetranucleotide instability on a genome-wide level, we utilized whole genome sequencing data from 227 microsatellite stable (MSS) CRCs, 18 MSI CRCs, 3 POLE-mutated CRCs, and their corresponding normal samples. As expected, we observed tetranucleotide instability in all MSI CRCs, accompanied by instability of mono-, di-, and trinucleotide repeats. Among MSS CRCs, some tumors displayed more microsatellite mutations than others as a continuum, and no distinct subset of tumors with the previously proposed molecular characters of EMAST could be observed. Our results suggest that tetranucleotide repeat mutations in non-MSI CRCs represent stochastic mutation events rather than define a distinct CRC subclass.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Testing/methods , INDEL Mutation , Microsatellite Repeats , Whole Genome Sequencing/methods , Genetic Testing/statistics & numerical data , Humans , Whole Genome Sequencing/statistics & numerical data
8.
PLoS Genet ; 14(3): e1007200, 2018 03.
Article in English | MEDLINE | ID: mdl-29522538

ABSTRACT

Small bowel adenocarcinoma (SBA) is an aggressive disease with limited treatment options. Despite previous studies, its molecular genetic background has remained somewhat elusive. To comprehensively characterize the mutational landscape of this tumor type, and to identify possible targets of treatment, we conducted the first large exome sequencing study on a population-based set of SBA samples from all three small bowel segments. Archival tissue from 106 primary tumors with appropriate clinical information were available for exome sequencing from a patient series consisting of a majority of confirmed SBA cases diagnosed in Finland between the years 2003-2011. Paired-end exome sequencing was performed using Illumina HiSeq 4000, and OncodriveFML was used to identify driver genes from the exome data. We also defined frequently affected cancer signalling pathways and performed the first extensive allelic imbalance (AI) analysis in SBA. Exome data analysis revealed significantly mutated genes previously linked to SBA (TP53, KRAS, APC, SMAD4, and BRAF), recently reported potential driver genes (SOX9, ATM, and ARID2), as well as novel candidate driver genes, such as ACVR2A, ACVR1B, BRCA2, and SMARCA4. We also identified clear mutation hotspot patterns in ERBB2 and BRAF. No BRAF V600E mutations were observed. Additionally, we present a comprehensive mutation signature analysis of SBA, highlighting established signatures 1A, 6, and 17, as well as U2 which is a previously unvalidated signature. Finally, comparison of the three small bowel segments revealed differences in tumor characteristics. This comprehensive work unveils the mutational landscape and most frequently affected genes and pathways in SBA, providing potential therapeutic targets, and novel and more thorough insights into the genetic background of this tumor type.


Subject(s)
Adenocarcinoma/genetics , Intestinal Neoplasms/genetics , Mutation , Adenocarcinoma/metabolism , Adult , Aged , Aged, 80 and over , Cohort Studies , Exome , Female , Humans , Intestinal Neoplasms/metabolism , Male , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Receptor, ErbB-2/genetics
9.
Br J Cancer ; 120(9): 922-930, 2019 04.
Article in English | MEDLINE | ID: mdl-30894686

ABSTRACT

BACKGROUND: Approximately 4% of colorectal cancer (CRC) patients have at least two simultaneous cancers in the colon. Due to the shared environment, these synchronous CRCs (SCRCs) provide a unique setting to study colorectal carcinogenesis. Understanding whether these tumours are genetically similar or distinct is essential when designing therapeutic approaches. METHODS: We performed exome sequencing of 47 primary cancers and corresponding normal samples from 23 patients. Additionally, we carried out a comprehensive mutational signature analysis to assess whether tumours had undergone similar mutational processes and the first immune cell score analysis (IS) of SCRC to analyse the interplay between immune cell invasion and mutation profile in both lesions of an individual. RESULTS: The tumour pairs shared only few mutations, favouring different mutations in known CRC genes and signalling pathways and displayed variation in their signature content. Two tumour pairs had discordant mismatch repair statuses. In majority of the pairs, IS varied between primaries. Differences were not explained by any clinicopathological variable or mutation burden. CONCLUSIONS: The study shows major diversity within SCRCs. Rather than rely on data from one tumour, our study highlights the need to evaluate both tumours of a synchronous pair for optimised targeted therapy.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Lymphocytes/immunology , Neoplasms, Multiple Primary/genetics , Neoplasms, Multiple Primary/immunology , Aged , Aged, 80 and over , CD3 Complex/immunology , CD8 Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Case-Control Studies , Colorectal Neoplasms/pathology , DNA Mutational Analysis , Exome/genetics , Exome/immunology , Female , Humans , Lymphocytes/pathology , Male , Microsatellite Instability , Middle Aged , Mutation , Neoplasms, Multiple Primary/pathology
10.
Genes Chromosomes Cancer ; 56(6): 453-459, 2017 06.
Article in English | MEDLINE | ID: mdl-28165652

ABSTRACT

Esophageal cancer is common worldwide, and often fatal. The major histological subtype is esophageal squamous cell carcinoma (ESCC). ESCC shows familial aggregation and high heritability. Mutations in RHBDF2 cause tylosis, a very rare disorder characterized by high life-time risk of ESCC, but no other well-established predisposition genes have been identified. To identify candidate susceptibility variants for ESCC we utilized the Population Information System and the Finnish cancer registry to find study materials by clustering ESCC patients by family name at birth and municipality at birth. We collected archival tissue material and exome sequenced a total of 30 ESCC cases. We prioritized shared, deleterious and rare variants that were significantly enriched in our sample set compared to Finnish and population subset specific controls. Six variants passed filtering, the most frequent being a nonsense mutation in DNAH9 (p.Tyr1573Ter) found in four unrelated patients. DNAH9 has been reported to be frequently lost in ESCC tumors. In this study, one patient's tumor showed loss of the wild type allele of DNAH9 suggesting a tumor suppressive function. A missense variant in GKAP1 was shared by three patients, and missense variants in BAG1, NFX1, FUK, and DDOST by two each. EP300 which has previously been implicated in the genesis of ESCC had a missense variant segregating in three affected individuals in a single family. If validated in independent patient sets, these variants could serve as a tool towards prevention and early diagnosis of ESCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Genetic Predisposition to Disease , Adult , Aged , Aged, 80 and over , Carrier Proteins/genetics , Female , Humans , Intracellular Signaling Peptides and Proteins , Male , Middle Aged , Mutation , Pedigree
11.
Hum Mol Genet ; 24(15): 4407-16, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25964426

ABSTRACT

Uterine leiomyomas are extremely frequent benign smooth muscle tumors often presenting as multiple concurrent lesions and causing symptoms such as abnormal menstrual bleeding, abdominal pain and infertility. While most leiomyomas are believed to arise independently, a few studies have encountered separate lesions harboring identical genetic changes, suggesting a common clonal origin. To investigate the frequency of clonally related leiomyomas, genome-wide tools need to be utilized, and thus little is known about this phenomenon. Using MED12 sequencing and SNP arrays, we searched for clonally related uterine leiomyomas in a set of 103 tumors from 14 consecutive patients who entered hysterectomy owing to symptomatic lesions. Whole-genome sequencing was also utilized to study the genomic architecture of clonally related tumors. This revealed four patients to have two or more tumors that were clonally related, all of which lacked MED12 mutations. Furthermore, some tumors were composed of genetically distinct subclones, indicating a nonlinear, branched model of tumor evolution. DEPDC5 was discovered as a novel tumor suppressor gene playing a role in the progression of uterine leiomyomas. Perhaps counterintuitively­considering Knudson's two-hit hypothesis­a large shared deletion was followed by different truncating DEPDC5 mutations in four clonally related leiomyomas. This study provides insight into the intratumor heterogeneity of these tumors and suggests that a shared clonal origin is a common feature of leiomyomas that do not carry an MED12 mutation. These observations also offer one explanation to the common occurrence of multiple concurrent lesions.


Subject(s)
Leiomyoma/genetics , Mediator Complex/genetics , Neoplasms/genetics , Repressor Proteins/genetics , Uterine Neoplasms/genetics , Carcinogenesis/genetics , Clone Cells , Female , GTPase-Activating Proteins , Genetic Predisposition to Disease , Genome, Human , Humans , Leiomyoma/pathology , Mutation , Neoplasms/pathology , Polymorphism, Single Nucleotide , Uterine Neoplasms/pathology
12.
Blood ; 125(4): 639-48, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25349174

ABSTRACT

The signal transducer and activator of transcription (STAT) family of transcription factors orchestrate hematopoietic cell differentiation. Recently, mutations in STAT1, STAT5B, and STAT3 have been linked to development of immunodysregulation polyendocrinopathy enteropathy X-linked-like syndrome. Here, we immunologically characterized 3 patients with de novo activating mutations in the DNA binding or dimerization domains of STAT3 (p.K392R, p.M394T, and p.K658N, respectively). The patients displayed multiorgan autoimmunity, lymphoproliferation, and delayed-onset mycobacterial disease. Immunologically, we noted hypogammaglobulinemia with terminal B-cell maturation arrest, dendritic cell deficiency, peripheral eosinopenia, increased double-negative (CD4(-)CD8(-)) T cells, and decreased natural killer, T helper 17, and regulatory T-cell numbers. Notably, the patient harboring the K392R mutation developed T-cell large granular lymphocytic leukemia at age 14 years. Our results broaden the spectrum of phenotypes caused by activating STAT3 mutations, highlight the role of STAT3 in the development and differentiation of multiple immune cell lineages, and strengthen the link between the STAT family of transcription factors and autoimmunity.


Subject(s)
Agammaglobulinemia , Autoimmune Diseases , Genetic Diseases, Inborn , Leukemia, Large Granular Lymphocytic , Mutation, Missense , Mycobacterium Infections , STAT3 Transcription Factor , Adolescent , Adult , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Agammaglobulinemia/pathology , Amino Acid Substitution , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Differentiation/genetics , Cell Differentiation/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, Inborn/pathology , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , Leukemia, Large Granular Lymphocytic/genetics , Leukemia, Large Granular Lymphocytic/immunology , Leukemia, Large Granular Lymphocytic/pathology , Mycobacterium Infections/genetics , Mycobacterium Infections/immunology , Mycobacterium Infections/pathology , Protein Structure, Tertiary , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th17 Cells/immunology , Th17 Cells/pathology
13.
N Engl J Med ; 369(1): 43-53, 2013 Jul 04.
Article in English | MEDLINE | ID: mdl-23738515

ABSTRACT

BACKGROUND: Uterine leiomyomas are benign but affect the health of millions of women. A better understanding of the molecular mechanisms involved may provide clues to the prevention and treatment of these lesions. METHODS: We performed whole-genome sequencing and gene-expression profiling of 38 uterine leiomyomas and the corresponding myometrium from 30 women. RESULTS: Identical variants observed in some separate tumor nodules suggested that these nodules have a common origin. Complex chromosomal rearrangements resembling chromothripsis were a common feature of leiomyomas. These rearrangements are best explained by a single event of multiple chromosomal breaks and random reassembly. The rearrangements created tissue-specific changes consistent with a role in the initiation of leiomyoma, such as translocations of the HMGA2 and RAD51B loci and aberrations at the COL4A5-COL4A6 locus, and occurred in the presence of normal TP53 alleles. In some cases, separate events had occurred more than once in single tumor-cell lineages. CONCLUSIONS: Chromosome shattering and reassembly resembling chromothripsis (a single genomic event that results in focal losses and rearrangements in multiple genomic regions) is a major cause of chromosomal abnormalities in uterine leiomyomas; we propose that tumorigenesis occurs when tissue-specific tumor-promoting changes are formed through these events. Chromothripsis has previously been associated with aggressive cancer; its common occurrence in leiomyomas suggests that it also has a role in the genesis and progression of benign tumors. We observed that multiple separate tumors could be seeded from a single lineage of uterine leiomyoma cells. (Funded by the Academy of Finland Center of Excellence program and others.).


Subject(s)
Chromosome Aberrations , Fumarate Hydratase/deficiency , Leiomyoma/genetics , Mediator Complex/genetics , Uterine Neoplasms/genetics , Chromosome Breakage , Chromosome Deletion , Collagen Type IV/genetics , Female , Fumarate Hydratase/genetics , Gene Expression Profiling , Gene Rearrangement , Genome-Wide Association Study , Humans , Mutation , Myometrium/chemistry , Up-Regulation
14.
PLoS Genet ; 9(10): e1003876, 2013.
Article in English | MEDLINE | ID: mdl-24146633

ABSTRACT

Hereditary factors are presumed to play a role in one third of colorectal cancer (CRC) cases. However, in the majority of familial CRC cases the genetic basis of predisposition remains unexplained. This is particularly true for families with few affected individuals. To identify susceptibility genes for this common phenotype, we examined familial cases derived from a consecutive series of 1514 Finnish CRC patients. Ninety-six familial CRC patients with no previous diagnosis of a hereditary CRC syndrome were included in the analysis. Eighty-six patients had one affected first-degree relative, and ten patients had two or more. Exome sequencing was utilized to search for genes harboring putative loss-of-function variants, because such alterations are likely candidates for disease-causing mutations. Eleven genes with rare truncating variants in two or three familial CRC cases were identified: UACA, SFXN4, TWSG1, PSPH, NUDT7, ZNF490, PRSS37, CCDC18, PRADC1, MRPL3, and AKR1C4. Loss of heterozygosity was examined in all respective cancer samples, and was detected in seven occasions involving four of the candidate genes. In all seven occasions the wild-type allele was lost (P = 0.0078) providing additional evidence that these eleven genes are likely to include true culprits. The study provides a set of candidate predisposition genes which may explain a subset of common familial CRC. Additional genetic validation in other populations is required to provide firm evidence for causality, as well as to characterize the natural history of the respective phenotypes.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Predisposition to Disease , Loss of Heterozygosity/genetics , Adult , Aged , Aged, 80 and over , Alleles , Exome , Female , Genotype , Humans , Male , Middle Aged , Pedigree
15.
Blood ; 121(17): 3428-30, 2013 Apr 25.
Article in English | MEDLINE | ID: mdl-23457195

ABSTRACT

Primary mediastinal large B-cell lymphoma (PMBCL) is a subtype of diffuse large B-cell lymphoma (DLBCL) accounting for 2% to 4% of all non-Hodgkin lymphomas. We report a family of 3 siblings with PMBCL and their cousin with extranodal DLBCL. The histopathological characteristics of lymphomas of all 4 patients are similar, implying post-germinal center differentiation and growth deregulation by other mechanisms than BCL2-mediated inhibition of apoptosis and suggesting a shared biological background. We aimed to identify the genetic defect underlying lymphoma susceptibility in this family using exome sequencing and linkage analysis. The only variant segregating in all 4 patients and not reported in genetic databases was 5533C>A (His1845Asn) in the MLL gene. To our knowledge, this is the first time when familial clustering of PMBCL is reported. Although we propose MLL as a candidate predisposition gene for this condition, this finding needs to be validated in additional cases.


Subject(s)
Exome/genetics , Genetic Predisposition to Disease , Genetic Variation/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Mediastinal Neoplasms/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Adult , Female , Genetic Linkage , High-Throughput Nucleotide Sequencing , Histone-Lysine N-Methyltransferase , Humans , Male , Middle Aged , Pedigree
16.
Int J Cancer ; 135(3): 611-23, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24382590

ABSTRACT

ARID1A has been identified as a novel tumor suppressor gene in ovarian cancer and subsequently in various other tumor types. ARID1A belongs to the ARID domain containing gene family, which comprises of 15 genes involved, for example, in transcriptional regulation, proliferation and chromatin remodeling. In this study, we used exome sequencing data to analyze the mutation frequency of all the ARID domain containing genes in 25 microsatellite unstable (MSI) colorectal cancers (CRCs) as a first systematic effort to characterize the mutation pattern of the whole ARID gene family. Genes which fulfilled the selection criteria in this discovery set (mutations in at least 4/25 [16%] samples, including at least one nonsense or splice site mutation) were chosen for further analysis in an independent validation set of 21 MSI CRCs. We found that in addition to ARID1A, which was mutated in 39% of the tumors (18/46), also ARID1B (13%, 6/46), ARID2 (13%, 6/46) and ARID4A (20%, 9/46) were frequently mutated. In all these genes, the mutations were distributed along the entire length of the gene, thus distinguishing them from typical MSI target genes previously described. Our results indicate that in addition to ARID1A, other members of the ARID gene family may play a role in MSI CRC.


Subject(s)
Colorectal Neoplasms/genetics , DNA-Binding Proteins/genetics , Exome/genetics , Microsatellite Repeats/genetics , Mutation/genetics , Nuclear Proteins/genetics , Retinoblastoma-Binding Protein 1/genetics , Transcription Factors/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Cohort Studies , Colorectal Neoplasms/pathology , Female , Follow-Up Studies , Humans , Male , Microsatellite Instability , Middle Aged , Neoplasm Staging , Prognosis
17.
Gastroenterology ; 145(3): 540-3.e22, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23684749

ABSTRACT

Microsatellite instability can be found in approximately 15% of all colorectal cancers. To detect new oncogenes we sequenced the exomes of 25 colorectal tumors and respective healthy colon tissue. Potential mutation hot spots were confirmed in 15 genes; ADAR, DCAF12L2, GLT1D1, ITGA7, MAP1B, MRGPRX4, PSRC1, RANBP2, RPS6KL1, SNCAIP, TCEAL6, TUBB6, WBP5, VEGFB, and ZBTB2; these were validated in 86 tumors with microsatellite instability. ZBTB2, RANBP2, and PSRC1 also were found to contain hot spot mutations in the validation set. The form of ZBTB2 associated with colorectal cancer increased cell proliferation. The mutation hot spots might be used to develop personalized tumor profiling and therapy.


Subject(s)
Adenocarcinoma/genetics , Colorectal Neoplasms/genetics , Microsatellite Instability , Oncogenes , Aged , Case-Control Studies , Female , Genetic Markers , Humans , Male , Sequence Analysis, DNA
18.
Genes Environ ; 46(1): 12, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711096

ABSTRACT

BACKGROUND: Sinonasal adenocarcinoma is a rare cancer, encompassing two different entities, the intestinal-type sinonasal adenocarcinoma (ITAC) and the non-intestinal-type sinonasal adenocarcinoma (non-ITAC). Occurrence of ITAC is strongly associated with exposure to hardwood dusts. In countries with predominant exposure to softwood dust the occurrence of sinonasal adenocarcinomas is lower and the relative amount of non-ITACs to ITACs is higher. The molecular mechanisms behind the tumorigenic effects of wood dust remain largely unknown. METHODS: We carried out whole-genome sequencing of formalin-fixed paraffin-embedded (FFPE) samples of sinonasal adenocarcinomas from ten wood dust-exposed and six non-exposed individuals, with partial tobacco exposure data. Sequences were analyzed for the presence of mutational signatures matching COSMIC database signatures. Driver mutations and CN variant regions were characterized. RESULTS: Mutation burden was higher in samples of wood dust-exposed patients (p = 0.016). Reactive oxygen species (ROS) damage-related mutational signatures were almost exclusively identified in ITAC subtype samples (p = 0.00055). Tobacco smoke mutational signatures were observed in samples of patients with tobacco exposure or missing information, but not in samples from non-exposed patients. A tetraploidy copy number (CN) signature was enriched in ITAC subtype (p = 0.042). CN variation included recurrent gains in COSMIC Cancer Gene Census genes TERT, SDHA, RAC1, ETV1, PCM1, and MYC. Pathogenic variants were observed most frequently in TP53, NF1, CHD2, BRAF, APC, and LRP1B. Driver mutations and copy number gains did not segregate by subtype. CONCLUSIONS: Our analysis identified distinct mutational characteristics in ITAC and non-ITAC. Mutational signature analysis may eventually become useful for documentation of occupation-related cancer, while the exact mechanisms behind wood dust-driven carcinogenesis remain elusive. The presence of homologous recombination deficiency signatures implies a novel opportunity for treatment, but further studies are needed.

19.
Sci Rep ; 14(1): 11562, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773237

ABSTRACT

Predisposing factors underlying familial aggregation of non-syndromic gliomas are still to be uncovered. Whole-exome sequencing was performed in four Finnish families with brain tumors to identify rare predisposing variants. A total of 417 detected exome variants and 102 previously reported glioma-related variants were further genotyped in 19 Finnish families with brain tumors using targeted sequencing. Rare damaging variants in GALNT13, MYO10 and AR were identified. Two families carried either c.553C>T (R185C) or c.1214T>A (L405Q) on GALNT13. Variant c.553C>T is located on the substrate-binding site of GALNT13. AR c.2180G>T (R727L), which is located on a ligand-binding domain of AR, was detected in two families, one of which also carried a GALNT13 variant. MYO10 c.4448A>G (N1483S) was detected in two families and c.1511C>T (A504V) variant was detected in one family. Both variants are located on functional domains related to MYO10 activity in filopodia formation. In addition, affected cases in six families carried a known glioma risk variant rs55705857 in CCDC26 and low-risk glioma variants. These novel findings indicate polygenic inheritance of familial glioma in Finland and increase our understanding of the genetic contribution to familial glioma susceptibility.


Subject(s)
Genetic Predisposition to Disease , Glioma , N-Acetylgalactosaminyltransferases , Pedigree , Humans , Finland , Glioma/genetics , Glioma/pathology , Female , Male , N-Acetylgalactosaminyltransferases/genetics , Polypeptide N-acetylgalactosaminyltransferase , Germ-Line Mutation , Adult , Middle Aged , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Exome Sequencing
20.
Scand J Gastroenterol ; 48(6): 672-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23544471

ABSTRACT

OBJECTIVE: Early-onset colorectal cancer (CRC), defined here as age of onset less than 40 years, develops frequently in genetically predisposed individuals. Next-generation sequencing is an increasingly available option in the diagnostic workup of suspected hereditary susceptibility, but little is known about the practical feasibility and additional diagnostic yield of the technology in this patient group. MATERIALS AND METHODS: We analyzed 38 young CRC patients derived from a set of 1514 CRC cases. All 38 tumors had been tested in our laboratory for microsatellite instability (MSI), and Sanger sequencing had been used to screen for MLH1 and MSH2 mutations in MSI cases. Also, gastrointestinal polyposis had been diagnosed clinically and molecularly. Family histories were acquired from national registries. If inherited syndromes had not been diagnosed in routine diagnostic efforts (n = 23), normal tissue DNA was analyzed for mutations in a comprehensive set of high-penetrance genes (MLH1, MSH2, MSH6, PMS2, APC, MUTYH, SMAD4, BMPR1A, LKB1/STK11, and PTEN) by exome sequencing. RESULTS: CRC predisposition syndromes were confirmed in 42% (16/38) of early-onset CRC patients. Hereditary nonpolyposis colorectal cancer was diagnosed in 12 (32%) patients, familial adenomatous polyposis in three (7.9%), and juvenile polyposis in one (2.6%) patient. Exome sequencing revealed one additional MLH1 mutation. Over half of the patients had advanced cancers (Dukes C or D, 61%, 23/38). The majority of nonsyndromic patients had unaffected first-degree relatives and microsatellite-stable tumors. CONCLUSIONS: Microsatellite instability positivity or gastrointestinal polyposis characterized all patients with unambiguous highly penetrant germline mutations. In our series, exome sequencing produced little added value in diagnosing the underlying predisposition conditions.


Subject(s)
Adenomatous Polyposis Coli/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Exome/genetics , Genetic Predisposition to Disease , Intestinal Polyposis/congenital , Neoplastic Syndromes, Hereditary/diagnosis , AMP-Activated Protein Kinase Kinases , Adaptor Proteins, Signal Transducing/genetics , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli Protein/genetics , Adenosine Triphosphatases/genetics , Adult , Bone Morphogenetic Protein Receptors, Type I/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , DNA Glycosylases/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Female , Genetic Testing , Humans , Intestinal Polyposis/diagnosis , Intestinal Polyposis/genetics , Male , Microsatellite Instability , Mismatch Repair Endonuclease PMS2 , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Neoplastic Syndromes, Hereditary/genetics , Nuclear Proteins/genetics , PTEN Phosphohydrolase/genetics , Protein Serine-Threonine Kinases/genetics , Sequence Analysis, DNA , Smad4 Protein/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL