Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Alzheimers Dement ; 20(2): 1123-1136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37881831

ABSTRACT

INTRODUCTION: The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site Alzheimer's Genomics Database (GenomicsDB) is a public knowledge base of Alzheimer's disease (AD) genetic datasets and genomic annotations. METHODS: GenomicsDB uses a custom systems architecture to adopt and enforce rigorous standards that facilitate harmonization of AD-relevant genome-wide association study summary statistics datasets with functional annotations, including over 230 million annotated variants from the AD Sequencing Project. RESULTS: GenomicsDB generates interactive reports compiled from the harmonized datasets and annotations. These reports contextualize AD-risk associations in a broader functional genomic setting and summarize them in the context of functionally annotated genes and variants. DISCUSSION: Created to make AD-genetics knowledge more accessible to AD researchers, the GenomicsDB is designed to guide users unfamiliar with genetic data in not only exploring but also interpreting this ever-growing volume of data. Scalable and interoperable with other genomics resources using data technology standards, the GenomicsDB can serve as a central hub for research and data analysis on AD and related dementias. HIGHLIGHTS: The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) offers to the public a unique, disease-centric collection of AD-relevant GWAS summary statistics datasets. Interpreting these data is challenging and requires significant bioinformatics expertise to standardize datasets and harmonize them with functional annotations on genome-wide scales. The NIAGADS Alzheimer's GenomicsDB helps overcome these challenges by providing a user-friendly public knowledge base for AD-relevant genetics that shares harmonized, annotated summary statistics datasets from the NIAGADS repository in an interpretable, easily searchable format.


Subject(s)
Alzheimer Disease , United States , Humans , Alzheimer Disease/genetics , Genome-Wide Association Study , National Institute on Aging (U.S.) , Genomics , Databases, Factual , Genetic Predisposition to Disease/genetics
2.
Bioinformatics ; 35(6): 1033-1039, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30668832

ABSTRACT

MOTIVATION: Small non-coding RNAs (sncRNAs, <100 nts) are highly abundant RNAs that regulate diverse and often tissue-specific cellular processes by associating with transcription factor complexes or binding to mRNAs. While thousands of sncRNA genes exist in the human genome, no single resource provides searchable, unified annotation, expression and processing information for full sncRNA transcripts and mature RNA products derived from these larger RNAs. RESULTS: Our goal is to establish a complete catalog of annotation, expression, processing, conservation, tissue-specificity and other biological features for all human sncRNA genes and mature products derived from all major RNA classes. DASHR (Database of small human non-coding RNAs) v2.0 database is the first that integrates human sncRNA gene and mature products profiles obtained from multiple RNA-seq protocols. Altogether, 185 tissues/cell types and sncRNA annotations and >800 curated experiments from ENCODE and GEO/SRA across multiple RNA-seq protocols for both GRCh38/hg38 and GRCh37/hg19 assemblies are integrated in DASHR. Moreover, DASHR is the first to contain both known and novel, previously un-annotated sncRNA loci identified by unsupervised segmentation (13 times more loci with 1 678 800 total). Additionally, DASHR v2.0 adds >3 200 000 annotations for non-small RNA genes and other genomic features (long-noncoding RNAs, mRNAs, promoters, repeats). Furthermore, DASHR v2.0 introduces an enhanced user interface, interactive experiment-by-locus table view, sncRNA locus sorting and filtering by biological features. All annotation and expression information directly downloadable and accessible as UCSC genome browser tracks. AVAILABILITY AND IMPLEMENTATION: DASHR v2.0 is freely available at https://lisanwanglab.org/DASHRv2. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA, Small Untranslated/supply & distribution , Databases, Nucleic Acid , Genomics , Humans , RNA, Long Noncoding , Sequence Analysis, RNA , Software
3.
Nucleic Acids Res ; 46(W1): W36-W42, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29733404

ABSTRACT

The introduction of new high-throughput small RNA sequencing protocols that generate large-scale genomics datasets along with increasing evidence of the significant regulatory roles of small non-coding RNAs (sncRNAs) have highlighted the urgent need for tools to analyze and interpret large amounts of small RNA sequencing data. However, it remains challenging to systematically and comprehensively discover and characterize sncRNA genes and specifically-processed sncRNA products from these datasets. To fill this gap, we present Small RNA-seq Portal for Analysis of sequencing expeRiments (SPAR), a user-friendly web server for interactive processing, analysis, annotation and visualization of small RNA sequencing data. SPAR supports sequencing data generated from various experimental protocols, including smRNA-seq, short total RNA sequencing, microRNA-seq, and single-cell small RNA-seq. Additionally, SPAR includes publicly available reference sncRNA datasets from our DASHR database and from ENCODE across 185 human tissues and cell types to produce highly informative small RNA annotations across all major small RNA types and other features such as co-localization with various genomic features, precursor transcript cleavage patterns, and conservation. SPAR allows the user to compare the input experiment against reference ENCODE/DASHR datasets. SPAR currently supports analyses of human (hg19, hg38) and mouse (mm10) sequencing data. SPAR is freely available at https://www.lisanwanglab.org/SPAR.


Subject(s)
Computational Biology/trends , RNA, Small Untranslated/genetics , RNA/genetics , Software , Animals , Genomics , High-Throughput Nucleotide Sequencing/instrumentation , Humans , Internet , Mice , Molecular Sequence Annotation , Sequence Analysis, RNA/instrumentation , Transcriptome/genetics
4.
Nucleic Acids Res ; 46(17): 8740-8753, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30113658

ABSTRACT

The majority of variants identified by genome-wide association studies (GWAS) reside in the noncoding genome, affecting regulatory elements including transcriptional enhancers. However, characterizing their effects requires the integration of GWAS results with context-specific regulatory activity and linkage disequilibrium annotations to identify causal variants underlying noncoding association signals and the regulatory elements, tissue contexts, and target genes they affect. We propose INFERNO, a novel method which integrates hundreds of functional genomics datasets spanning enhancer activity, transcription factor binding sites, and expression quantitative trait loci with GWAS summary statistics. INFERNO includes novel statistical methods to quantify empirical enrichments of tissue-specific enhancer overlap and to identify co-regulatory networks of dysregulated long noncoding RNAs (lncRNAs). We applied INFERNO to two large GWAS studies. For schizophrenia (36,989 cases, 113,075 controls), INFERNO identified putatively causal variants affecting brain enhancers for known schizophrenia-related genes. For inflammatory bowel disease (IBD) (12,882 cases, 21,770 controls), INFERNO found enrichments of immune and digestive enhancers and lncRNAs involved in regulation of the adaptive immune response. In summary, INFERNO comprehensively infers the molecular mechanisms of causal noncoding variants, providing a sensitive hypothesis generation method for post-GWAS analysis. The software is available as an open source pipeline and a web server.


Subject(s)
Enhancer Elements, Genetic , Genome, Human , Inflammatory Bowel Diseases/genetics , RNA, Long Noncoding/genetics , Schizophrenia/genetics , Software , Adaptive Immunity , Case-Control Studies , Female , Genetic Markers , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/physiopathology , Internet , Linkage Disequilibrium , Male , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , RNA, Long Noncoding/immunology , Schizophrenia/immunology , Schizophrenia/physiopathology
5.
NAR Genom Bioinform ; 4(1): lqab123, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35047815

ABSTRACT

Querying massive functional genomic and annotation data collections, linking and summarizing the query results across data sources/data types are important steps in high-throughput genomic and genetic analytical workflows. However, these steps are made difficult by the heterogeneity and breadth of data sources, experimental assays, biological conditions/tissues/cell types and file formats. FILER (FunctIonaL gEnomics Repository) is a framework for querying large-scale genomics knowledge with a large, curated integrated catalog of harmonized functional genomic and annotation data coupled with a scalable genomic search and querying interface. FILER uniquely provides: (i) streamlined access to >50 000 harmonized, annotated genomic datasets across >20 integrated data sources, >1100 tissues/cell types and >20 experimental assays; (ii) a scalable genomic querying interface; and (iii) ability to analyze and annotate user's experimental data. This rich resource spans >17 billion GRCh37/hg19 and GRCh38/hg38 genomic records. Our benchmark querying 7 × 109 hg19 FILER records shows FILER is highly scalable, with a sub-linear 32-fold increase in querying time when increasing the number of queries 1000-fold from 1000 to 1 000 000 intervals. Together, these features facilitate reproducible research and streamline integrating/querying large-scale genomic data within analyses/workflows. FILER can be deployed on cloud or local servers (https://bitbucket.org/wanglab-upenn/FILER) for integration with custom pipelines and is freely available (https://lisanwanglab.org/FILER).

6.
J Alzheimers Dis ; 86(1): 461-477, 2022.
Article in English | MEDLINE | ID: mdl-35068457

ABSTRACT

BACKGROUND: Recent Alzheimer's disease (AD) genetics findings from genome-wide association studies (GWAS) span progressively larger and more diverse populations and outcomes. Currently, there is no up-to-date resource providing harmonized and searchable information on all AD genetic associations found by GWAS, nor linking the reported genetic variants and genes with functional and genomic annotations. OBJECTIVE: Create an integrated/harmonized, and literature-derived collection of population-specific AD genetic associations. METHODS: We developed the Alzheimer's Disease Variant Portal (ADVP), an extensive collection of associations curated from >200 GWAS publications from Alzheimer's Disease Genetics Consortium and other consortia. Genetic associations were systematically extracted, harmonized, and annotated from both the genome-wide significant and suggestive loci reported in these publications. To ensure consistent representation of AD genetic findings, all the extracted genetic association information was harmonized across specifically designed publication, variant, and association categories. RESULTS: ADVP V1.0 (February 2021) catalogs 6,990 associations related to disease-risk, expression quantitative traits, endophenotypes, or neuropathology. This extensive harmonization effort led to a catalog containing >900 loci, >1,800 variants, >80 cohorts, and 8 populations. Besides, ADVP provides investigators with a seamless integration of genomic and publicly available functional annotations across multiple databases per harmonized variant and gene records, thus facilitating further understanding and analyses of these genetics findings. CONCLUSION: ADVP is a valuable resource for investigators to quickly and systematically explore high-confidence AD genetic findings and provides insights into population-specific AD genetic architecture. ADVP is continually maintained and enhanced by NIAGADS and is freely accessible at https://advp.niagads.org.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Alzheimer Disease/genetics , Endophenotypes , Genetic Predisposition to Disease/genetics , Humans , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL