Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 181(5): 1176-1187.e16, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32437660

ABSTRACT

Dysfunctional mitochondria accumulate in many human diseases. Accordingly, mitophagy, which removes these mitochondria through lysosomal degradation, is attracting broad attention. Due to uncertainties in the operational principles of conventional mitophagy probes, however, the specificity and quantitativeness of their readouts are disputable. Thorough investigation of the behaviors and fates of fluorescent proteins inside and outside lysosomes enabled us to develop an indicator for mitophagy, mito-SRAI. Through strict control of its mitochondrial targeting, we were able to monitor mitophagy in fixed biological samples more reproducibly than before. Large-scale image-based high-throughput screening led to the discovery of a hit compound that induces selective mitophagy of damaged mitochondria. In a mouse model of Parkinsons disease, we found that dopaminergic neurons selectively failed to execute mitophagy that promoted their survival within lesions. These results show that mito-SRAI is an essential tool for quantitative studies of mitochondrial quality control.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Lysosomes/metabolism , Mitophagy/physiology , Animals , Autophagy/physiology , Fluorescent Antibody Technique/methods , Fluorescent Dyes/chemistry , Humans , Lysosomes/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitophagy/genetics
2.
Expert Rev Proteomics ; : 1-21, 2024 Oct 24.
Article in English | MEDLINE | ID: mdl-39376081

ABSTRACT

INTRODUCTION: Glycosylation, the process of glycan synthesis and attachment to target molecules, is a crucial and common post-translational modification (PTM) in mammalian cells. It affects the protein's hydrophilicity, charge, solubility, structure, localization, function, and protection from proteolysis. Aberrant glycosylation in proteins can reveal new detection and therapeutic Glyco-biomarkers, which help to improve accurate early diagnosis and personalized treatment. This review underscores the pivotal role of glycans and glycoproteins as a source of biomarkers in human diseases, particularly cancer. AREAS COVERED: This review delves into the implications of glycosylation, shedding light on its intricate roles in cancer-related cellular processes influencing biomarkers. It is underpinned by a thorough examination of literature up to June 2024 in PubMed, Scopus, and Google Scholar; concentrating on the terms: (Glycosylation[Title/Abstract]) OR (Glycan[Title/Abstract]) OR (glycoproteomics[Title/Abstract]) OR (Proteoglycans[Title/Abstract]) OR (Glycomarkers[Title/Abstract]) AND (Cancer[Title/Abstract]) AND ((Diagno*[Title/Abstract]) OR (Progno*[Title/Abstract])). EXPERT OPINION: Glyco-biomarkers enhance early cancer detection, allow early intervention, and improve patient prognoses. However, the abundance and complex dynamic glycan structure may make their scientific and clinical application difficult. This exploration of glycosylation signatures in cancer biomarkers can provide a detailed view of cancer etiology and instill hope in the potential of glycosylation to revolutionize cancer research.

3.
J Infect Chemother ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173741

ABSTRACT

INTRODUCTION: Since the first report of a novel coronavirus infection caused by SARS-CoV-2 in late 2019, the infection has spread rapidly and had a significant impact on our lives. In the early stages of the COVID-19 pandemic, there was no adequate testing system in place, despite an urgent need for infection control measures in student dormitories. METHODS: We have been monitoring SARS-CoV-2 in wastewater as part of our infection control efforts in the university facilities since fall 2020. In the four dormitories, absorbent cotton was placed in the drains that the facility wastewater passed through, and samples were collected twice a week and processed by RT-PCR for SARS-CoV-2. The dormitory residents were informed of the monitoring results the next morning. RESULTS: The positivity of residents in the dormitories was highly consistent with the positivity of wastewater. Wastewater was positive in 89 % of cases before any residents were tested and found positive. Facility wastewater monitoring showed sensitivities of 80.4 % and specificities of 87.6 %. No traceable resident-to-resident transmission of infection within the facility was confirmed during the study period. CONCLUSION: Sampling a single wastewater outlet in a building for SARS-CoV-2 PCR can effectively indicate the presence or absence of COVID-19 cases and be very useful for infection control of a facility. This simple and effective monitoring is applicable to future outbreaks of both emerging and re-emerging infectious diseases.

4.
J Water Health ; 22(2): 309-320, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38421625

ABSTRACT

The implementation of precoagulation before the physical removal process is expected to achieve a high virus removal rate. However, viruses may form small flocs and subsequently escape into the effluent during physical removal processes. This study evaluated how viruses in the microflocs could be quantified using conventional virus quantification methods (plaque assay and quantitative polymerase chain reaction (qPCR)) to reveal the risk of underestimating virus concentration. In this study, the microfloc dissolution phenomenon in phosphate buffer solution was employed as a floc dissolution test. Viruses in microflocs formed under the experimental conditions. assuming water treatments, were quantified before and after floc dissolution. The findings revealed that virus concentrations increased by 1.0-3.9 log plaque-forming units/mL according to the plaque assay and by 1.7-4.0 log copies/mL according to the qPCR. This increase occurred after the dissolution of microflocs that were prepared in the humic acid test water. In the case of treated wastewater, virus concentrations increased in all samples according to the plaque assay and in seven of eight samples according to the qPCR. Our results indicate the necessity of careful consideration of virus quantification after precoagulation and physical removal systems.


Subject(s)
Viruses , Wastewater , Wastewater/virology , Viruses/isolation & purification
5.
Semin Immunol ; 47: 101388, 2020 02.
Article in English | MEDLINE | ID: mdl-31924500

ABSTRACT

A humoral immune response in the form of autoantibodies to tumor antigens occurs early during tumor development. Identification of antigens that induce an autoantibody response restricted to a cancer type has the potential to yield markers useful for early detection. A multitude of strategies are currently available for the discovery of tumor antigens directed autoantibodies in circulation. Each approach has advantages and limitations for comprehensive discovery of antigenic epitopes. Herein, we review established and novel strategies and methodologies and highlight potential cancer applications.


Subject(s)
Antigens, Neoplasm/immunology , Autoantibodies/immunology , Biomarkers, Tumor , Neoplasms/immunology , Antigen-Antibody Complex/immunology , Autoantibodies/genetics , Autoantigens/immunology , Cell Surface Display Techniques , Computational Biology/methods , Early Detection of Cancer , Epitope Mapping/methods , Epitopes/immunology , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Peptides/genetics , Peptides/immunology , Prognosis , Proteomics/methods
6.
Mol Cell ; 58(1): 186-93, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25773597

ABSTRACT

Crystallization of proteins may occur in the cytosol of a living cell, but how a cell responds to intracellular protein crystallization remains unknown. We developed a variant of coral fluorescent protein that forms diffraction-quality crystals within mammalian cells. This expression system allowed the direct determination of its crystal structure at 2.9 Å, as well as observation of the crystallization process and cellular responses. The micron-sized crystal, which emerged rapidly, was a pure assembly of properly folded ß-barrels and was recognized as an autophagic cargo that was transferred to lysosomes via a process involving p62 and LC3. Several lines of evidence indicated that autophagy was not required for crystal nucleation or growth. These findings demonstrate that in vivo protein crystals can provide an experimental model to study chemical catalysis. This knowledge may be beneficial for structural biology studies on normal and disease-related protein aggregation.


Subject(s)
Anthozoa/chemistry , Cytosol/metabolism , Green Fluorescent Proteins/chemistry , Lysosomes/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autophagy , Crystallization , Crystallography, X-Ray , Cytosol/ultrastructure , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Hippocampus/cytology , Hippocampus/metabolism , Humans , Lysosomes/ultrastructure , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Molecular , Neurons/metabolism , Neurons/ultrastructure , Primary Cell Culture , Protein Folding , Protein Structure, Secondary , Protein Transport , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequestosome-1 Protein , X-Ray Diffraction
7.
J Water Health ; 21(9): 1318-1324, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37756198

ABSTRACT

Chlorine disinfection is commonly applied to inactivate pathogenic viruses in drinking water treatment plants. However, the role of water quality in chlorine disinfection of viruses has not been investigated thoughtfully. In this study, we investigated the inactivation efficiency of coxsackievirus B5 (CVB5) by free chlorine using actual water samples collected from four full-scale drinking water treatment plants in Japan under strict turbidity management (less than 0.14 NTU) over a 12-month period. It was found that chlorine disinfection of CVB5 might not be affected by water quality. Japanese turbidity management might play an indirect role in controlling the efficiency of chlorine disinfection.


Subject(s)
Chlorine , Drinking Water , Chlorine/pharmacology , Enterovirus B, Human , Disinfection , Japan
8.
Water Sci Technol ; 87(9): 2304-2314, 2023 May.
Article in English | MEDLINE | ID: mdl-37186632

ABSTRACT

Microfiltration (MF) has been widely adopted as an advanced treatment process to reduce suspended solids and turbidity in treated wastewater effluents designated for potable reuse. Although microfilter pores are much larger than viruses, the addition of a coagulant upstream of a microfilter system can achieve stable virus removal. Ceramic membranes have a narrow pore size distribution to achieve the high removal of contaminants. This study aims to evaluate virus log reduction using bench-scale coagulation and ceramic membrane MF. To investigate the effects of differences in net surface hydrophobicity, 18 sewage-derived F-specific RNA phages (FRNAPHs) were used for batch hydrophobicity and coagulation-MF tests. The capability of bench-scale coagulation and ceramic membrane MF under continuous automated long-term operation was tested to remove the lab reference strain MS2 and three selected FRNAPH isolates which varied by surface property. Median virus log reduction values (LRVs) exceeding 6.2 were obtained for all three isolates and MS2. Although coagulation and hydrophobicity were positively correlated, the virus isolate demonstrating the lowest level of hydrophobicity and coagulation (genogroup I) still exhibited a high LRV. Thus, coagulation and ceramic membrane MF systems may serve as viable options for virus removal during water reclamation and advanced treatment.


Subject(s)
RNA Phages , Viruses , Water Purification , Ultrafiltration , Ceramics/chemistry , Membranes, Artificial
9.
Polym J ; 54(6): 821-825, 2022.
Article in English | MEDLINE | ID: mdl-35311245

ABSTRACT

Liquid-crystalline (LC) water-treatment membranes obtained by in situ photopolymerization of ionic mesogenic monomers have been shown to efficiently remove viruses. In our previous works, bicontinuous cubic (Cubbi) and smectic (Sm) LC membranes prepared from ionic taper- and rod-shaped polymerizable mesogens, respectively, were used for this purpose. Here, we report the results of virus removal by columnar (Col) LC water-treatment membranes having ionic nanochannels obtained from ionic taper-shaped mesogens. These effects are compared with those obtained for Cubbi membranes. The effects of these Col and Cubbi LC ionic membranes on the removal of several viruses from their cocktail solution are also examined.

10.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012199

ABSTRACT

There is substantial interest in mining neoantigens for cancer applications. Non-canonical proteins resulting from frameshift mutations have been identified as neoantigens in cancer. We investigated the landscape of non-canonical proteins in non-small cell lung cancer (NSCLC) and their induced immune response in the form of autoantibodies. A database of cryptoproteins was computationally constructed and comprised all alternate open reading frames (altORFs) and ORFs identified in pseudogenes, noncoding RNAs, and untranslated regions of mRNAs that did not align with known canonical proteins. Proteomic profiles of seventeen lung adenocarcinoma (LUAD) cell lines were searched to evaluate the occurrence of cryptoproteins. To assess the immunogenicity, immunoglobulin (Ig)-bound cryptoproteins in plasmas were profiled by mass spectrometry. The specimen set consisted of plasmas from 30 newly diagnosed NSCLC cases, pre-diagnostic plasmas from 51 NSCLC cases, and 102 control plasmas. An analysis of LUAD cell lines identified 420 cryptoproteins. Plasma Ig-bound analyses revealed 90 cryptoproteins uniquely found in cases and 14 cryptoproteins that had a fold-change >2 compared to controls. In pre-diagnostic samples, 17 Ig-bound cryptoproteins yielded an odds ratio ≥2. Eight Ig-bound cryptoproteins were elevated in both pre-diagnostic and newly diagnosed cases compared to controls. Cryptoproteins represent a class of neoantigens that induce an autoantibody response in NSCLC.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Immunity , Proteins , Proteomics/methods
11.
Gastroenterology ; 159(6): 2146-2162.e33, 2020 12.
Article in English | MEDLINE | ID: mdl-32805281

ABSTRACT

BACKGROUND & AIMS: Chromosomal instability (CIN) is a carcinogenesis event that promotes metastasis and resistance to therapy by unclear mechanisms. Expression of the colon cancer-associated transcript 2 gene (CCAT2), which encodes a long noncoding RNA (lncRNA), associates with CIN, but little is known about how CCAT2 lncRNA regulates this cancer enabling characteristic. METHODS: We performed cytogenetic analysis of colorectal cancer (CRC) cell lines (HCT116, KM12C/SM, and HT29) overexpressing CCAT2 and colon organoids from C57BL/6N mice with the CCAT2 transgene and without (controls). CRC cells were also analyzed by immunofluorescence microscopy, γ-H2AX, and senescence assays. CCAT2 transgene and control mice were given azoxymethane and dextran sulfate sodium to induce colon tumors. We performed gene expression array and mass spectrometry to detect downstream targets of CCAT2 lncRNA. We characterized interactions between CCAT2 with downstream proteins using MS2 pull-down, RNA immunoprecipitation, and selective 2'-hydroxyl acylation analyzed by primer extension analyses. Downstream proteins were overexpressed in CRC cells and analyzed for CIN. Gene expression levels were measured in CRC and non-tumor tissues from 5 cohorts, comprising more than 900 patients. RESULTS: High expression of CCAT2 induced CIN in CRC cell lines and increased resistance to 5-fluorouracil and oxaliplatin. Mice that expressed the CCAT2 transgene developed chromosome abnormalities, and colon organoids derived from crypt cells of these mice had a higher percentage of chromosome abnormalities compared with organoids from control mice. The transgenic mice given azoxymethane and dextran sulfate sodium developed more and larger colon polyps than control mice given these agents. Microarray analysis and mass spectrometry indicated that expression of CCAT2 increased expression of genes involved in ribosome biogenesis and protein synthesis. CCAT2 lncRNA interacted directly with and stabilized BOP1 ribosomal biogenesis factor (BOP1). CCAT2 also increased expression of MYC, which activated expression of BOP1. Overexpression of BOP1 in CRC cell lines resulted in chromosomal missegregation errors, and increased colony formation, and invasiveness, whereas BOP1 knockdown reduced viability. BOP1 promoted CIN by increasing the active form of aurora kinase B, which regulates chromosomal segregation. BOP1 was overexpressed in polyp tissues from CCAT2 transgenic mice compared with healthy tissue. CCAT2 lncRNA and BOP1 mRNA or protein were all increased in microsatellite stable tumors (characterized by CIN), but not in tumors with microsatellite instability compared with nontumor tissues. Increased levels of CCAT2 lncRNA and BOP1 mRNA correlated with each other and with shorter survival times of patients. CONCLUSIONS: We found that overexpression of CCAT2 in colon cells promotes CIN and carcinogenesis by stabilizing and inducing expression of BOP1 an activator of aurora kinase B. Strategies to target this pathway might be developed for treatment of patients with microsatellite stable colorectal tumors.


Subject(s)
Chromosomal Instability , Colorectal Neoplasms/genetics , Neoplasms, Experimental/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aurora Kinase B/metabolism , Azoxymethane/toxicity , Carcinogenesis/genetics , Cell Line, Tumor , Colon/cytology , Colon/pathology , Colorectal Neoplasms/chemically induced , Colorectal Neoplasms/pathology , Cytogenetic Analysis , Dextrans/toxicity , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Intestinal Mucosa/cytology , Intestinal Mucosa/pathology , Male , Mice , Mice, Transgenic , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/pathology , Organoids , Primary Cell Culture , Proto-Oncogene Proteins c-myc/metabolism , RNA, Long Noncoding/genetics , RNA-Binding Proteins/metabolism , Signal Transduction/genetics
12.
Environ Sci Technol ; 55(5): 3156-3164, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33583178

ABSTRACT

The disinfection susceptibilities of viruses vary even among variants, yet the inactivation efficiency of a certain virus genotype, species, or genus was determined based on the susceptibility of its laboratory strain. The objectives were to evaluate the variability in susceptibilities to free chlorine, UV254, and ozone among 13 variants of coxsackievirus B5 (CVB5) and develop the model allowing for predicting the overall inactivation of heterogeneous CVB5. Our results showed that the susceptibilities differed by up to 3.4-fold, 1.3-fold, and 1.8-fold in free chlorine, UV254, and ozone, respectively. CVB5 in genogroup B exhibited significantly lower susceptibility to free chlorine and ozone than genogroup A, where the laboratory strain, Faulkner, belongs. The capsid protein in genogroup B contained a lower number of sulfur-containing amino acids, readily reactive to oxidants. We reformulated the Chick-Watson model by incorporating the probability distributions of inactivation rate constants to capture the heterogeneity. This expanded Chick-Watson model indicated that up to 4.2-fold larger free chlorine CT is required to achieve 6-log inactivation of CVB5 than the prediction by the Faulkner strain. Therefore, it is recommended to incorporate the variation in disinfection susceptibilities for predicting the overall inactivation of a certain type of viruses.


Subject(s)
Ozone , Viruses , Water Purification , Chlorine , Disinfection , Enterovirus B, Human
13.
Gut ; 69(10): 1818-1831, 2020 10.
Article in English | MEDLINE | ID: mdl-31988194

ABSTRACT

OBJECTIVE: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS: FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS: Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.


Subject(s)
Carcinogenesis , Cell Proliferation , Colorectal Neoplasms , Neovascularization, Pathologic , RNA, Long Noncoding , STAT3 Transcription Factor/metabolism , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Drug Discovery , Gene Expression Regulation, Neoplastic , Genetic Markers , Genetic Therapy , Humans , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Pharmacogenomic Testing , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Vascular Endothelial Growth Factor A/metabolism
14.
Small ; 16(23): e2001721, 2020 06.
Article in English | MEDLINE | ID: mdl-32363808

ABSTRACT

To obtain high quality of drinking water free from biocontaminants is especially important issue. A new strategy employing smectic liquid-crystalline ionic membranes exhibiting 2D structures of layered nanochannels for water treatment is proposed for efficient virus removal and sufficient water flux. The smectic A (SmA) liquid-crystalline membranes obtained by in situ polymerization of an ionic mesogenic monomer are examined for removal of three distinct viruses with small size: Qß bacteriophage, MS2 bacteriophage, and Aichi virus. The semi-bilayer structure of the SmA significantly obstructs the virus penetration with an average log reduction value of 7.3 log10 or the equivalent of reducing 18 million viruses down to 1. Furthermore, the layered nanochannels of the SmA liquid crystal allow efficient water permeation compared to other types of liquid-crystalline membrane consisting of nanopores.


Subject(s)
Liquid Crystals , Nanostructures , Viruses , Water Purification , Membranes, Artificial
15.
Proc Natl Acad Sci U S A ; 114(35): E7301-E7310, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28811376

ABSTRACT

Epithelial ovarian cancer (EOC) is a deadly cancer, and its prognosis has not been changed significantly during several decades. To seek new therapeutic targets for EOC, we performed an in vivo dropout screen in human tumor xenografts using a pooled shRNA library targeting thousands of druggable genes. Then, in follow-up studies, we performed a second screen using a genome-wide CRISPR/Cas9 library. These screens identified 10 high-confidence drug targets that included well-known oncogenes such as ERBB2 and RAF1, and novel oncogenes, notably KPNB1, which we investigated further. Genetic and pharmacological inhibition showed that KPNB1 exerts its antitumor effects through multiphase cell cycle arrest and apoptosis induction. Mechanistically, proteomic studies revealed that KPNB1 acts as a master regulator of cell cycle-related proteins, including p21, p27, and APC/C. Clinically, EOC patients with higher expression levels of KPNB1 showed earlier recurrence and worse prognosis than those with lower expression levels of KPNB1. Interestingly, ivermectin, a Food and Drug Administration-approved antiparasitic drug, showed KPNB1-dependent antitumor effects on EOC, serving as an alternative therapeutic toward EOC patients through drug repositioning. Last, we found that the combination of ivermectin and paclitaxel produces a stronger antitumor effect on EOC both in vitro and in vivo than either drug alone. Our studies have thus identified a combinatorial therapy for EOC, in addition to a plethora of potential drug targets.


Subject(s)
Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , beta Karyopherins/genetics , beta Karyopherins/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Ovarian Epithelial , Cell Cycle Checkpoints/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor/methods , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Ivermectin/pharmacology , Loss of Function Mutation/genetics , Neoplasms, Glandular and Epithelial/metabolism , Oncogenes , Ovarian Neoplasms/metabolism , Paclitaxel/pharmacology , RNA, Small Interfering/genetics
16.
Proc Natl Acad Sci U S A ; 113(11): E1555-64, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26929325

ABSTRACT

The immunoproteasome plays a key role in generation of HLA peptides for T cell-mediated immunity. Integrative genomic and proteomic analysis of non-small cell lung carcinoma (NSCLC) cell lines revealed significantly reduced expression of immunoproteasome components and their regulators associated with epithelial to mesenchymal transition. Low expression of immunoproteasome subunits in early stage NSCLC patients was associated with recurrence and metastasis. Depleted repertoire of HLA class I-bound peptides in mesenchymal cells deficient in immunoproteasome components was restored with either IFNγ or 5-aza-2'-deoxycytidine (5-aza-dC) treatment. Our findings point to a mechanism of immune evasion of cells with a mesenchymal phenotype and suggest a strategy to overcome immune evasion through induction of the immunoproteasome to increase the cellular repertoire of HLA class I-bound peptides.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/immunology , Lung Neoplasms/mortality , Proteasome Endopeptidase Complex/genetics , Adult , Aged , Aged, 80 and over , Antigens, CD/immunology , Antigens, CD/metabolism , Cadherins/immunology , Cadherins/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Disease-Free Survival , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , HLA Antigens/metabolism , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Proteasome Endopeptidase Complex/immunology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/immunology
17.
J Biol Chem ; 292(24): 10295-10305, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28468826

ABSTRACT

Neutrophil elastase (NE) can be rapidly taken up by tumor cells that lack endogenous NE expression, including breast cancer, which results in cross-presentation of PR1, an NE-derived HLA-A2-restricted peptide that is an immunotherapy target in hematological and solid tumor malignancies. The mechanism of NE uptake, however, remains unknown. Using the mass spectrometry-based approach, we identify neuropilin-1 (NRP1) as a NE receptor that mediates uptake and PR1 cross-presentation in breast cancer cells. We demonstrated that soluble NE is a specific, high-affinity ligand for NRP1 with a calculated Kd of 38.7 nm Furthermore, we showed that NRP1 binds to the RRXR motif in NE. Notably, NRP1 knockdown with interfering RNA or CRISPR-cas9 system and blocking using anti-NRP1 antibody decreased NE uptake and, subsequently, susceptibility to lysis by PR1-specific cytotoxic T cells. Expression of NRP1 in NRP1-deficient cells was sufficient to induce NE uptake. Altogether, because NRP1 is broadly expressed in tumors, our findings suggest a role for this receptor in immunotherapy strategies that target cross-presented antigens.


Subject(s)
Absorption, Physiological , Breast Neoplasms/metabolism , Cross-Priming , Leukocyte Elastase/metabolism , Neoplasm Proteins/metabolism , Neuropilin-1/metabolism , Amino Acid Motifs , Antibodies, Blocking/metabolism , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CRISPR-Cas Systems , Cell Line, Tumor , Female , Humans , Kinetics , Leukocyte Elastase/chemistry , Leukocyte Elastase/immunology , Ligands , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neuropilin-1/antagonists & inhibitors , Neuropilin-1/chemistry , Neuropilin-1/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , RNA Interference , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
18.
Int J Cancer ; 142(7): 1405-1417, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29134640

ABSTRACT

Several promising chemopreventive agents have for lung cancer emerged in preclinical models and in retrospective trials. These agents have been shown to modulate pathways altered in carcinogenesis and reduce markers of carcinogenesis in animal and cell culture models. Cancer-prone transgenic mice with oncogenic Kras expressed in the airway epithelium (CcspCre/+ ; KrasLSL-G12D/+ ) were raised on diets compounded with myo-inositol. These animals form lung premalignant lesions in a stereotypical fashion over the ten weeks following weaning. Mice raised on myo-inositol containing diets showed potent reduction in the number, size, and stage of lesions as compared to those raised on control diets. myo-inositol has previously been reported to inhibit phosphoinositide 3-kinase (PI3K) signaling. However, in mice raised on myo-inositol, total PI3K signaling was largely unaffected. Proteomic and cytokine analyses revealed large reduction in IL-6 related pathways, including STAT3 phosphorylation. This effect was not due to direct inhibition of IL-6 production and autocrine signaling within the tumor cell, but rather through alteration in macrophage recruitment and in phenotype switching, with an increase in antitumoral M1 macrophages.


Subject(s)
Inositol/pharmacology , Interleukin-6/metabolism , Lung Neoplasms/pathology , Macrophages/drug effects , STAT3 Transcription Factor/metabolism , Animals , Anticarcinogenic Agents/pharmacology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Phosphorylation
19.
J Biol Chem ; 291(50): 25799-25808, 2016 Dec 09.
Article in English | MEDLINE | ID: mdl-27803159

ABSTRACT

Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of fibrillar collagens, which leads to the formation of stable collagen cross-links. Recently we reported that LH2 enhances the metastatic propensity of lung cancer by increasing the amount of stable hydroxylysine aldehyde-derived collagen cross-links (HLCCs), which generate a stiffer tumor stroma (Chen, Y., et al. (2015) J. Clin. Invest. 125, 125, 1147-1162). It is generally accepted that LH2 modifies procollagen α chains on the endoplasmic reticulum before the formation of triple helical procollagen molecules. Herein, we report that LH2 is also secreted and modifies collagen in the extracellular space. Analyses of lung cancer cell lines demonstrated that LH2 is present in the cell lysates and the conditioned media in a dimeric, active form in both compartments. LH2 co-localized with collagen fibrils in the extracellular space in human lung cancer specimens and in orthotopic lung tumors generated by injection of a LH2-expressing human lung cancer cell line into nude mice. LH2 depletion in MC3T3 osteoblastic cells impaired the formation of HLCCs, resulting in an increase in the unmodified lysine aldehyde-derived collagen cross-link (LCC), and the addition of recombinant LH2 to the media of LH2-deficient MC3T3 cells was sufficient to rescue HLCC formation in the extracellular matrix. The finding that LH2 modifies collagen in the extracellular space challenges the current view that LH2 functions solely on the endoplasmic reticulum and could also have important implications for cancer biology.


Subject(s)
Collagen/metabolism , Extracellular Matrix/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/metabolism , Protein Processing, Post-Translational , Animals , Cell Line, Tumor , Collagen/genetics , Extracellular Matrix/genetics , Humans , Mice , Neoplasm Proteins/genetics , Neoplasms/genetics , Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase/genetics
20.
Biochem Biophys Res Commun ; 483(1): 88-93, 2017 01 29.
Article in English | MEDLINE | ID: mdl-28057485

ABSTRACT

Patient-specific induced pluripotent stem cells (iPSCs) show promise for use as tools for in vitro modeling of Parkinson's disease. We sought to improve the efficiency of dopaminergic (DA) neuron induction from iPSCs by the using surface markers expressed in DA progenitors to increase the significance of the phenotypic analysis. By sorting for a CD184high/CD44- fraction during neural differentiation, we obtained a population of cells that were enriched in DA neuron precursor cells and achieved higher differentiation efficiencies than those obtained through the same protocol without sorting. This high efficiency method of DA neuronal induction enabled reliable detection of reactive oxygen species (ROS) accumulation and vulnerable phenotypes in PARK2 iPSCs-derived DA neurons. We additionally established a quantitative system using the mt-mKeima reporter system to monitor mitophagy in which mitochondria fuse with lysosomes and, by combining this system with the method of DA neuronal induction described above, determined that mitophagy is impaired in PARK2 neurons. These findings suggest that the efficiency of DA neuron induction is important for the precise detection of cellular phenotypes in modeling Parkinson's disease.


Subject(s)
Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Ubiquitin-Protein Ligases/metabolism , Apoptosis , Cell Differentiation/physiology , Cell Line , Humans , Hyaluronan Receptors/metabolism , Mitophagy/physiology , Models, Neurological , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL