Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38702188

ABSTRACT

Norepinephrine (NE), a neuromodulator released by locus ceruleus (LC) neurons throughout the cortex, influences arousal and learning through extrasynaptic vesicle exocytosis. While NE within cortical regions has been viewed as a homogenous field, recent studies have demonstrated heterogeneous axonal dynamics and advances in GPCR-based fluorescent sensors permit direct observation of the local dynamics of NE at cellular scale. To investigate how the spatiotemporal dynamics of NE release in the prefrontal cortex (PFC) affect neuronal firing, we employed in vivo two-photon imaging of layer 2/3 of the PFC in order to observe fine-scale neuronal calcium and NE dynamics concurrently. In this proof of principle study, we found that local and global NE fields can decouple from one another, providing a substrate for local NE spatiotemporal activity patterns. Optic flow analysis revealed putative release and reuptake events which can occur at the same location, albeit at different times, indicating the potential to create a heterogeneous NE field. Utilizing generalized linear models, we demonstrated that cellular Ca2+ fluctuations are influenced by both the local and global NE field. However, during periods of local/global NE field decoupling, the local field drives cell firing dynamics rather than the global field. These findings underscore the significance of localized, phasic NE fluctuations for structuring cell firing, which may provide local neuromodulatory control of cortical activity.


Subject(s)
Calcium , Neurons , Norepinephrine , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Prefrontal Cortex/metabolism , Norepinephrine/metabolism , Neurons/physiology , Neurons/metabolism , Calcium/metabolism , Male , Action Potentials/physiology , Mice, Inbred C57BL , Mice , Female
2.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38352615

ABSTRACT

Slow waves are a distinguishing feature of non-rapid-eye-movement (NREM) sleep, an evolutionarily conserved process critical for brain function. Non-human studies posit that the claustrum, a small subcortical nucleus, coordinates slow waves. We recorded claustrum neurons in humans during sleep. In contrast to neurons from other brain regions, claustrum neurons increased their activity and tracked slow waves during NREM sleep suggesting that the claustrum plays a role in human sleep architecture.

3.
Biol Psychiatry ; 96(4): 256-267, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38316333

ABSTRACT

BACKGROUND: To adapt to threats in the environment, animals must predict them and engage in defensive behavior. While the representation of a prediction error signal for reward has been linked to dopamine, a neuromodulatory prediction error for aversive learning has not been identified. METHODS: We measured and manipulated norepinephrine release during threat learning using optogenetics and a novel fluorescent norepinephrine sensor. RESULTS: We found that norepinephrine response to conditioned stimuli reflects aversive memory strength. When delays between auditory stimuli and footshock are introduced, norepinephrine acts as a prediction error signal. However, temporal difference prediction errors do not fully explain norepinephrine dynamics. To explain noradrenergic signaling, we used an updated reinforcement learning model with uncertainty about time and found that it explained norepinephrine dynamics across learning and variations in temporal and auditory task structure. CONCLUSIONS: Norepinephrine thus combines cognitive and affective information into a predictive signal and links time with the anticipation of danger.


Subject(s)
Norepinephrine , Norepinephrine/metabolism , Uncertainty , Animals , Male , Optogenetics , Fear/physiology , Conditioning, Classical/physiology , Reinforcement, Psychology , Anticipation, Psychological/physiology , Frontal Lobe/metabolism , Frontal Lobe/physiology
4.
bioRxiv ; 2024 May 26.
Article in English | MEDLINE | ID: mdl-38826215

ABSTRACT

Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results support a novel approach for screening psychoactive drugs with psychedelic properties.

SELECTION OF CITATIONS
SEARCH DETAIL