ABSTRACT
Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.
Subject(s)
Bacteria/genetics , Gastrointestinal Microbiome , Gene Transfer, Horizontal , Bacteria/classification , Bacteria/isolation & purification , DNA, Bacterial/chemistry , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Feces/microbiology , Genome, Bacterial , Humans , Phylogeny , Rural Population , Sequence Analysis, DNA , Urban Population , Whole Genome SequencingABSTRACT
Microbial communities and their associated bioactive compounds1-3 are often disrupted in conditions such as the inflammatory bowel diseases (IBD)4. However, even in well-characterized environments (for example, the human gastrointestinal tract), more than one-third of microbial proteins are uncharacterized and often expected to be bioactive5-7. Here we systematically identified more than 340,000 protein families as potentially bioactive with respect to gut inflammation during IBD, about half of which have not to our knowledge been functionally characterized previously on the basis of homology or experiment. To validate prioritized microbial proteins, we used a combination of metagenomics, metatranscriptomics and metaproteomics to provide evidence of bioactivity for a subset of proteins that are involved in host and microbial cell-cell communication in the microbiome; for example, proteins associated with adherence or invasion processes, and extracellular von Willebrand-like factors. Predictions from high-throughput data were validated using targeted experiments that revealed the differential immunogenicity of prioritized Enterobacteriaceae pilins and the contribution of homologues of von Willebrand factors to the formation of Bacteroides biofilms in a manner dependent on mucin levels. This methodology, which we term MetaWIBELE (workflow to identify novel bioactive elements in the microbiome), is generalizable to other environmental communities and human phenotypes. The prioritized results provide thousands of candidate microbial proteins that are likely to interact with the host immune system in IBD, thus expanding our understanding of potentially bioactive gene products in chronic disease states and offering a rational compendium of possible therapeutic compounds and targets.
Subject(s)
Bacterial Proteins , Gastrointestinal Microbiome , Genes, Microbial , Inflammatory Bowel Diseases , Bacterial Proteins/analysis , Bacterial Proteins/genetics , Chronic Disease , Gastrointestinal Microbiome/genetics , Humans , Inflammatory Bowel Diseases/microbiology , Metagenomics , Proteomics , Reproducibility of Results , TranscriptomeABSTRACT
Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.
Subject(s)
Gastrointestinal Microbiome , Intestine, Large , Symbiosis , Trypsin , Administration, Oral , Animals , Bacterial Secretion Systems , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , COVID-19/complications , Citrobacter rodentium/immunology , Diarrhea/complications , Feces/microbiology , Gastrointestinal Microbiome/genetics , Humans , Immunoglobulin A/metabolism , Intestine, Large/metabolism , Intestine, Large/microbiology , Mice , Murine hepatitis virus/metabolism , Murine hepatitis virus/pathogenicity , Proteolysis , SARS-CoV-2/pathogenicity , Trypsin/metabolism , Virus InternalizationABSTRACT
Centenarians have a decreased susceptibility to ageing-associated illnesses, chronic inflammation and infectious diseases1-3. Here we show that centenarians have a distinct gut microbiome that is enriched in microorganisms that are capable of generating unique secondary bile acids, including various isoforms of lithocholic acid (LCA): iso-, 3-oxo-, allo-, 3-oxoallo- and isoallolithocholic acid. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from the faecal microbiota of a centenarian, we identified Odoribacteraceae strains as effective producers of isoalloLCA both in vitro and in vivo. Furthermore, we found that the enzymes 5α-reductase (5AR) and 3ß-hydroxysteroid dehydrogenase (3ß-HSDH) were responsible for the production of isoalloLCA. IsoalloLCA exerted potent antimicrobial effects against Gram-positive (but not Gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and Enterococcus faecium. These findings suggest that the metabolism of specific bile acids may be involved in reducing the risk of infection with pathobionts, thereby potentially contributing to the maintenance of intestinal homeostasis.
Subject(s)
Bacteria/metabolism , Biosynthetic Pathways , Centenarians , Gastrointestinal Microbiome , Lithocholic Acid/analogs & derivatives , Lithocholic Acid/biosynthesis , 3-Hydroxysteroid Dehydrogenases/metabolism , Aged, 80 and over , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/metabolism , Bacteria/classification , Bacteria/enzymology , Bacteria/isolation & purification , Cholestenone 5 alpha-Reductase/metabolism , Feces/chemistry , Feces/microbiology , Female , Gram-Positive Bacteria/metabolism , Humans , Lithocholic Acid/metabolism , Male , Mice , SymbiosisABSTRACT
A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.
Subject(s)
Gastrointestinal Microbiome/drug effects , Lactobacillus/drug effects , Lactobacillus/isolation & purification , Sodium Chloride/pharmacology , Th17 Cells/drug effects , Th17 Cells/immunology , Animals , Autoimmunity/drug effects , Blood Pressure/drug effects , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/microbiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Feces/microbiology , Humans , Hypertension/chemically induced , Indoleacetic Acids/metabolism , Indoles/metabolism , Intestines/cytology , Intestines/drug effects , Intestines/immunology , Intestines/microbiology , Lactobacillus/immunology , Lymphocyte Activation/drug effects , Lymphocyte Count , Male , Mice , Pilot Projects , Sodium Chloride/administration & dosage , Symbiosis , Th17 Cells/cytology , Tryptophan/metabolismABSTRACT
The gut microbiome is a dynamic system that changes with host development, health, behavior, diet, and microbe-microbe interactions. Prior work on gut microbial time series has largely focused on autoregressive models (e.g. Lotka-Volterra). However, we show that most of the variance in microbial time series is non-autoregressive. In addition, we show how community state-clustering is flawed when it comes to characterizing within-host dynamics and that more continuous methods are required. Most organisms exhibited stable, mean-reverting behavior suggestive of fixed carrying capacities and abundant taxa were largely shared across individuals. This mean-reverting behavior allowed us to apply sparse vector autoregression (sVAR)-a multivariate method developed for econometrics-to model the autoregressive component of gut community dynamics. We find a strong phylogenetic signal in the non-autoregressive co-variance from our sVAR model residuals, which suggests niche filtering. We show how changes in diet are also non-autoregressive and that Operational Taxonomic Units strongly correlated with dietary variables have much less of an autoregressive component to their variance, which suggests that diet is a major driver of microbial dynamics. Autoregressive variance appears to be driven by multi-day recovery from frequent facultative anaerobe blooms, which may be driven by fluctuations in luminal redox. Overall, we identify two dynamic regimes within the human gut microbiota: one likely driven by external environmental fluctuations, and the other by internal processes.
Subject(s)
Bacteria/genetics , Digestion/physiology , Eating/genetics , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Animals , Bacteria/classification , Computer Simulation , Gastrointestinal Tract/physiology , Humans , Microbial Interactions/genetics , Models, Biological , Models, Statistical , Regression AnalysisABSTRACT
Chitin is an abundant, carbon-rich polymer in the marine environment. Chitinase activity has been detected in spent media of Synechococcus WH7803 cultures-yet it was unclear which specific enzymes were involved. Here we delivered a CRISPR tool into the cells via electroporation to generate loss-of-function mutants of putative candidates and identified ChiA as the enzyme required for the activity detected in the wild type.
Subject(s)
Chitinases , Synechococcus , Synechococcus/genetics , Synechococcus/metabolism , Chitin/metabolism , Chitinases/genetics , Chitinases/metabolismABSTRACT
Isolates of the marine picocyanobacteria, Prochlorococcus and Synechococcus, are often accompanied by diverse heterotrophic "contaminating" bacteria, which can act as confounding variables in otherwise controlled experiments. Traditional microbiological methods for eliminating contaminants, such as direct streak-plating, are often unsuccessful with this particular group of microorganisms. While they will grow in pour plates, colonies often remain contaminated with heterotrophic bacteria that can migrate through the soft agar. Additionally, axenic clones of picocyanobacteria can be recovered via dilution-to-extinction in liquid medium, but the efficiency of recovery is low, often requiring large numbers of 96-well plates. Here, we detail a simple and effective protocol for rendering cultures of Synechococcus and Prochlorococcus strains free of bacterial contaminants while at the same time yielding clonal isolates. We build on the fact that co-culture with specific heterotrophs-"helper heterotrophs"-is often necessary to grow colonies of picocyanobacteria from single cells in agar. Suspecting that direct physical contact between the helper and the picocyanobacterial cells was not necessary for the "helper effect," we developed a protocol in which the helper cells are embedded in soft agar pour plates, a filter overlaid on the surface, and a picocyanobacterial culture is diluted and then spotted on top of the filter. With this approach, motile contaminants cannot swim to the colonies, and it is possible to obtain the expected number of colonies from a given input (i.e., a Poisson distribution of colonies with an expected value equal to the input number of cells), thus ensuring clonal colonies. Using this protocol, we rendered three strains of Synechococcus, two strains of Prochlorococcus, and 19 new strains of Synechococcus from coastal seawater clonal and free of heterotrophic bacteria. The simplicity of this approach should expand the repertoire of axenic picocyanobacterial strains available for controlled physiological experiments. It will also enable the study of microdiversity in populations of picocyanobacteria by facilitating large-scale isolation of picocyanobacterial clones from a single source, including direct isolation from natural seawater.
ABSTRACT
BACKGROUND: The cyanobacteria Prochlorococcus and Synechococcus are responsible for around 10% of global net primary productivity, serving as part of the foundation of marine food webs. Heterotrophic bacteria are often co-isolated with these picocyanobacteria in seawater enrichment cultures that contain no added organic carbon; heterotrophs grow on organic carbon supplied by the photolithoautotrophs. For examining the selective pressures shaping autotroph/heterotroph interactions, we have made use of unialgal enrichment cultures of Prochlorococcus and Synechococcus maintained for hundreds to thousands of generations in the lab. We examine the diversity of heterotrophs in 74 enrichment cultures of these picocyanobacteria obtained from diverse areas of the global oceans. RESULTS: Heterotroph community composition differed between clades and ecotypes of the autotrophic 'hosts' but there was significant overlap in heterotroph community composition across these cultures. Collectively, the cultures were comprised of many shared taxa, even at the genus level. Yet, observed differences in community composition were associated with time since isolation, location, depth, and methods of isolation. The majority of heterotrophs in the cultures are rare in the global ocean, but enrichment conditions favor the opportunistic outgrowth of these rare bacteria. However, we found a few examples, such as bacteria in the family Rhodobacteraceae, of heterotrophs that were ubiquitous and abundant in cultures and in the global oceans. We found their abundance in the wild is also positively correlated with that of picocyanobacteria. CONCLUSIONS: Particular conditions surrounding isolation have a persistent effect on long-term culture composition, likely from bottlenecking and selection that happen during the early stages of enrichment for the picocyanobacteria. We highlight the potential for examining ecologically relevant relationships by identifying patterns of distribution of culture-enriched organisms in the global oceans.
ABSTRACT
Broad spectrum antibiotics cause both transient and lasting damage to the ecology of the gut microbiome. Antibiotic-induced loss of gut bacterial diversity has been linked to susceptibility to enteric infections. Prior work on subtherapeutic antibiotic treatment in humans and non-human animals has suggested that entire gut communities may exhibit tolerance phenotypes. In this study, we validate the existence of these community tolerance phenotypes in the murine gut and explore how antibiotic treatment duration or a diet enriched in antimicrobial phytochemicals might influence the frequency of this phenotype. Almost a third of mice exhibited whole-community tolerance to a high dose of the ß-lactam antibiotic cefoperazone, independent of antibiotic treatment duration or dietary phytochemical amendment. We observed few compositional differences between non-responder microbiota during antibiotic treatment and the untreated control microbiota. However, gene expression was vastly different between non-responder microbiota and controls during treatment, with non-responder communities showing an upregulation of antimicrobial tolerance genes, like efflux transporters, and a down-regulation of central metabolism. Future work should focus on what specific host- or microbiome-associated factors are responsible for tipping communities between responder and non-responder phenotypes so that we might learn to harness this phenomenon to protect our microbiota from routine antibiotic treatment.
Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cefoperazone/pharmacology , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Animal Feed , Animals , Bacteria/genetics , Bacteria/growth & development , Drug Tolerance , Dysbiosis , Feces/microbiology , Female , Genotype , Mice, Inbred C57BL , Phenotype , Seaweed , Time FactorsABSTRACT
For fecal microbiota transplantation (FMT) to be successful in immune diseases like inflammatory bowel disease, it is assumed that therapeutic microbes and their beneficial functions and immune interactions must colonize a recipient patient and persist in sufficient quantity and for a sufficient period of time to produce a clinical benefit. Few studies, however, have comprehensively profiled the colonization and persistence of transferred microbes along with the transfer of their microbial functions and interactions with the host immune system. Using 16S, metagenomic, and immunoglobulin A (IgA) sequencing, we analyzed hundreds of longitudinal microbiome samples from a randomized controlled trial of 12 patients with ulcerative colitis who received fecal transplant or placebo for 12 weeks. We uncovered diverse competitive dynamics among donor and patient strains, showing that persistence of transferred microbes is far from static. Indeed, one patient experienced a dramatic loss of donor bacteria 10 weeks into the trial, coinciding with a bloom of pathogenic bacteria and worsening symptoms. We evaluated the transfer of microbial functions, including desired ones, such as butyrate production, and unintended ones, such as antibiotic resistance. By profiling bacteria coated with IgA, we identified bacteria associated with inflammation and found that microbial interactions with the host immune system can be transferred across people, which could play a role in gut microbiome therapeutics for immune-related diseases. Our findings shed light on the colonization dynamics of gut microbes and their functions in the context of FMT to treat a complex disease-information that may provide a foundation for developing more-targeted therapeutics. IMPORTANCE Fecal microbiota transplantation (FMT)-transferring fecal microbes from a healthy donor to a sick patient-has shown promise for gut diseases such as inflammatory bowel disease. Unlike pharmaceuticals, however, fecal transplants are complex mixtures of living organisms, which must then interact with the microbes and immune system of the recipient. We sought to understand these interactions by tracking the microbes of 12 inflammatory bowel disease patients who received fecal transplants for 12 weeks. We uncovered a range of dynamics. For example, one patient experienced successful transfer of donor bacteria, only to lose them after 10 weeks. We similarly evaluated transfer of microbial functions, including how they interacted with the recipient's immune system. Our findings shed light on the colonization dynamics of gut microbes, as well as their functions in the context of FMT-information that may provide a critical foundation for the development of more-targeted therapeutics.
Subject(s)
Bacteria/metabolism , Fecal Microbiota Transplantation , Feces/microbiology , Gastrointestinal Microbiome , Inflammatory Bowel Diseases/therapy , Bacteria/classification , Bacteria/genetics , Butyrates/analysis , Butyrates/metabolism , Cohort Studies , Humans , Inflammatory Bowel Diseases/microbiology , Longitudinal Studies , Metagenomics/methodsABSTRACT
Trade-offs constrain evolution through genetic linkages and environmental limitations, impacting organismal physiology, morphology, and behavior. They are likely to also play a role in modulating functions of the microbiota, but previous research has not included tests of trade-off theory. Here, we review broadly how gut microbial functions are typically studied and outline evolutionarily-informed mechanisms to improve such research. These include measuring a diverse set of functions, with a focus on changes in host phenotype; more explicitly articulating the selective forces relevant to the microbiota; and using functionally relevant models. We present dietary intervention as a case study where trade-offs are likely to be relevant and discuss how the health effects of the modern human diet could be better understood in light of trade-offs. Appreciating microbial functional trade-offs as well as host trade-offs will be necessary to design effective interventions targeting the microbiota and, more generally, to understand the evolution of host-microbe interactions.
Subject(s)
Diet , Environment , Gastrointestinal Microbiome , Host Microbial Interactions , Animals , Evolution, Molecular , Humans , Mice , Models, Biological , PhenotypeABSTRACT
Interest in manipulating the gut microbiota to treat disease has led to a need for understanding how organisms can establish themselves when introduced into a host with an intact microbial community. Here, we employ the concept of orthogonal niche engineering: a resource typically absent from the diet, seaweed, creates a customized niche for an introduced organism. In the short term, co-introduction of this resource at 1% in the diet along with an organism with exclusive access to this resource, Bacteroides plebeius DSM 17135, enables it to colonize at a median abundance of 1% and frequently up to 10 or more percent, both on pulsed and constant seaweed diets. In a two-month follow-up after the initial treatment period, B. plebeius stops responding to seaweed in mice initially on the constant seaweed diet, suggesting treatment regime will affect controllability. These results offer potential for diet-based intervention to introduce and control target organisms.
Subject(s)
Bacteroides/physiology , Diet/methods , Gastrointestinal Microbiome/physiology , Seaweed/chemistry , Symbiosis/physiology , Animals , Bacterial Load , Bacteroides/isolation & purification , Eating/physiology , Feces/microbiology , Female , Mice , Mice, Inbred C57BL , Verrucomicrobia/isolation & purification , Verrucomicrobia/physiologyABSTRACT
Endospore-formers in the human microbiota are well adapted for host-to-host transmission, and an emerging consensus points to their role in determining health and disease states in the gut. The human gut, more than any other environment, encourages the maintenance of endospore formation, with recent culture-based work suggesting that over 50% of genera in the microbiome carry genes attributed to this trait. However, there has been limited work on the ecological role of endospores and other stress-resistant cellular states in the human gut. In fact, there is no data to indicate whether organisms with the genetic potential to form endospores actually form endospores in situ and how sporulation varies across individuals and over time. Here we applied a culture-independent protocol to enrich for endospores and other stress-resistant cells in human feces to identify variation in these states across people and within an individual over time. We see that cells with resistant states are more likely than those without to be shared among multiple individuals, which suggests that these resistant states are particularly adapted for cross-host dissemination. Furthermore, we use untargeted fecal metabolomics in 24 individuals and within a person over time to show that these organisms respond to shared environmental signals, and in particular, dietary fatty acids, that likely mediate colonization of recently disturbed human guts.
Subject(s)
Bacteria/classification , Gastrointestinal Microbiome/physiology , Bacteria/genetics , Biodiversity , Feces/microbiology , Humans , Spores, Bacterial/physiologyABSTRACT
Dietary interventions to manipulate the human gut microbiome for improved health have received increasing attention. However, their design has been limited by a lack of understanding of the quantitative impact of diet on a host's microbiota. We present a highly controlled diet perturbation experiment in a healthy, human cohort in which individual micronutrients are spiked in against a standardized background. We identify strong and predictable responses of specific microbes across participants consuming prebiotic spike-ins, at the level of both strains and functional genes, suggesting fine-scale resource partitioning in the human gut. No predictable responses to non-prebiotic micronutrients were found. Surprisingly, we did not observe decreases in day-to-day variability of the microbiota compared to a complex, varying diet, and instead found evidence of diet-induced stress and an associated loss of biodiversity. Our data offer insights into the effect of a low complexity diet on the gut microbiome, and suggest that effective personalized dietary interventions will rely on functional, strain-level characterization of a patient's microbiota.
Subject(s)
Dietary Supplements , Prebiotics , Adult , Gastrointestinal Microbiome/physiology , Humans , Polymorphism, Single Nucleotide/genetics , Young AdultABSTRACT
Environmental factors are suspected in the increase of obesity and cancer in industrialized countries but are poorly understood. Here, we used animal models to test how future generations may be affected by Westernized diets. We discover long-term consequences of grandmothers' in utero dietary exposures, leading to high rates of obesity and frequent cancers of lung and liver in two subsequent generations of mice. Transgenerational effects were transplantable using diet-associated bacteria communities alone. Consequently, feeding of beneficial microbes was sufficient to lower transgenerational risk for cancer and obesity regardless of diet history. Targeting microbes may be a highly effective population-based approach to lower risk for cancer.
Subject(s)
Microbiota , Neoplasms/microbiology , Animals , Animals, Outbred Strains , Diet, Western/adverse effects , Feces/microbiology , Female , Gastrointestinal Tract/microbiology , Male , Mice , Obesity/etiology , RiskABSTRACT
Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.
Subject(s)
Limosilactobacillus reuteri/physiology , Oxytocin/metabolism , Symbiosis , Wound Healing , Animals , CD4-Positive T-Lymphocytes/immunology , Collagen/metabolism , DNA-Binding Proteins/deficiency , Drinking Water/microbiology , Female , Mice , Oxytocin/blood , Time Factors , Up-RegulationABSTRACT
A recent epidemiological study showed that eating 'fast food' items such as potato chips increased likelihood of obesity, whereas eating yogurt prevented age-associated weight gain in humans. It was demonstrated previously in animal models of obesity that the immune system plays a critical role in this process. Here we examined human subjects and mouse models consuming Westernized 'fast food' diet, and found CD4(+) T helper (Th)17-biased immunity and changes in microbial communities and abdominal fat with obesity after eating the Western chow. In striking contrast, eating probiotic yogurt together with Western chow inhibited age-associated weight gain. We went on to test whether a bacteria found in yogurt may serve to lessen fat pathology by using purified Lactobacillus reuteri ATCC 6475 in drinking water. Surprisingly, we discovered that oral L. reuteri therapy alone was sufficient to change the pro-inflammatory immune cell profile and prevent abdominal fat pathology and age-associated weight gain in mice regardless of their baseline diet. These beneficial microbe effects were transferable into naïve recipient animals by purified CD4(+) T cells alone. Specifically, bacterial effects depended upon active immune tolerance by induction of Foxp3(+) regulatory T cells (Treg) and interleukin (Il)-10, without significantly changing the gut microbial ecology or reducing ad libitum caloric intake. Our finding that microbial targeting restored CD4(+) T cell balance and yielded significantly leaner animals regardless of their dietary 'fast food' indiscretions suggests population-based approaches for weight management and enhancing public health in industrialized societies.