Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Biol Rep ; 46(4): 4185-4193, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31098807

ABSTRACT

Studies of X-linked pedigrees were the first to identify genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD). However, some pedigrees present a huge clinical variability between the affected members. This intrafamilial heterogeneity may be due to cooccurrence of two disorders. In the present study, we describe a multiplex X-linked pedigree in which three siblings have ID, ASD and dysmorphic features but with variable severity. Through Fragile X syndrome test, we identified the full FMR1 mutation in only two males. Whole exome sequencing allowed us to identify a novel hemizygous variant (p.Gln2080_Gln2083del) in MED12 gene in two males. So, the first patient has FXS, the second has both FMR1 and MED12 mutations while the third has only the MED12 variant. MED12 mutations are implicated in several forms of X-linked ID. Family segregation and genotype-phenotype-correlation were in favor of a cooccurrence of two forms of X-linked ID. Our work provides further evidence of the involvement of MED12 in XLID. Moreover, through these results, it is noteworthy to raise awareness that intrafamilial heterogeneity in FXS multiplex families could result from the cooccurrence of multiple clinical entities involving at least two separate genetic loci. This should be taken into consideration for genetic testing and counselling in patients/families with atypical disease symptoms.


Subject(s)
Fragile X Syndrome/genetics , Mediator Complex/genetics , Adolescent , Autistic Disorder/genetics , Family , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/metabolism , Genes, X-Linked , Genetic Association Studies , Genetic Variation/genetics , Humans , Intellectual Disability/genetics , Male , Mediator Complex/metabolism , Mutation , Pedigree , Phenotype , Siblings , Exome Sequencing
2.
Ann Hum Biol ; 45(1): 86-97, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29382283

ABSTRACT

BACKGROUND: Douiret is an isolated Berber population from South-Eastern Tunisia. The strong geographic and cultural isolation characterising this population might have contributed to remarkable endogamy and consanguinity, which were practiced for several centuries. AIM: The objective of this study is to evaluate the mitochondrial DNA (mtDNA) genetic structure of Douiret and to compare it to other Mediterranean populations with a special focus on major haplogroup T. SUBJECTS AND METHODS: Genomic DNA was extracted from blood samples of 58 unrelated individuals collected from the different patrilineal lineages of the population. The hypervariable region 1 of the mtDNA was amplified and sequenced. For comparative analyses, additional HVS1 sequences (n = 4857) were compiled from previous studies. RESULTS: The maternal background of the studied sample from Douiret was mainly of Eurasian origin (74%) followed by Sub-Saharan (17%) and North African (3%) lineages. Douiret harbours the highest frequency of haplogroup T in the Mediterranean region, assigned to the unique subclade T1a (38%). Phylogenetic analysis showed an outlier position of Douiret at the Mediterranean level. CONCLUSIONS: The genetic structure of Douiret highlights the presence of founders, most likely of Near/Middle Eastern origin, who conquered this area during the Middle/Late Upper Palaeolithic and Neolithic dispersals.


Subject(s)
DNA, Mitochondrial/genetics , Ethnicity/genetics , Genetic Variation , Haplotypes , Humans , Tunisia
3.
Med Princ Pract ; 27(4): 317-322, 2018.
Article in English | MEDLINE | ID: mdl-29723869

ABSTRACT

OBJECTIVE: Rare variants in the TREM2 gene have been reported to significantly increase the risk of Alzheimer's disease in Caucasian populations. Hitherto, this association was not studied in North African populations. In this work, we aimed to study the association between TREM2 exon 2 variants and the risk of late-onset Alzheimer's disease (LOAD) in a Tunisian population. SUBJECTS AND METHODS: We sequenced exon 2 of TREM2 in a Tunisian cohort of 172 LOAD patients and 158 control subjects. We used the Fisher exact test to compare the distribution of allelic frequencies between the two groups. RESULTS: We identified 4 previously reported nonsynonymous variants (p.Asp39Glu, p.Arg62His, p.Thr96Lys, and p.Val126Gly) and 1 novel synonymous variant (p.Gln109Gln), none of which was significantly associated with the risk of Alzheimer's disease. Moreover, the rare TREM2 variant (p.Arg47His), which was considered to be a risk factor for Alzheimer's disease in European descent populations, was not detected in our cohort. CONCLUSION: These findings do not support a major role for TREM2 in the pathogenesis of LOAD in the Tunisian population.


Subject(s)
Alzheimer Disease/genetics , Membrane Glycoproteins/genetics , Receptors, Immunologic/genetics , Aged , Aged, 80 and over , Case-Control Studies , Female , Genetic Predisposition to Disease , Genotyping Techniques , Humans , Male , Risk Factors , Sequence Analysis , Tunisia , White People
4.
BMC Med Genet ; 18(1): 70, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28683740

ABSTRACT

BACKGROUND: In North African populations, G2019S mutation in LRRK2 gene, encoding for the leucine-rich repeat kinase 2, is the most prevalent mutation linked to familial and sporadic Parkinson's disease (PD). Early detection of G2019S by fast genetic testing is very important to guide PD's diagnosis and support patients and their family caregivers for better management of their life according to disease's evolution. METHODS: In our study, a genetic PD's diagnosis tool was developed for large scale genotyping using Kompetitive Allele Specific PCR (KASP) technology. We investigated G2019S's frequency in 250 Tunisian PD patients and 218 controls. RESULTS: We found that 33.6% of patients and 1.3% of controls were carriers. Demographic characteristics of patients with G2019S had no differences compared with non-carrier patients. Thereby, we could emphasize the implication of G2019S in PD without any distinctive demographic factors in the studied cohort. Sixty patients out of 250 were genotyped using Taqman assay and Sanger sequencing. The genotyping results were found to be concordant with KASP assay. CONCLUSIONS: The G2019S mutation frequency in our cohort was similar to that reported in previous studies. Comparing to Taqman assay and Sanger sequencing, KASP was shown to be a reliable, time and cost effective genotyping assay for routine G2019S screening in genetic testing laboratories.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Parkinson Disease/genetics , Adult , Aged , Cohort Studies , Female , Genotype , Humans , Male , Middle Aged , Mutation , Mutation Rate , Polymerase Chain Reaction , Tunisia
5.
Neurol Sci ; 37(3): 403-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26577183

ABSTRACT

Arylsulfatase A (ASA) is a lysosomal enzyme involved in the catabolism of cerebroside sulfate. ASA deficiency is associated with metachromatic leukodystrophy (MLD). Low ASA activities have also been reported in a more common condition with no apparent clinical consequences termed ASA pseudo-deficiency (ASA-PD) which is associated with two linked mutations in the ASA gene (c.1049A>G and c.*96A>G). This study aimed to investigate the frequency of the two ASA-PD variants and their linkage disequilibrium (LD) among Tunisians. ASA-PD variants were detected in 129 healthy Tunisians and their frequencies were compared to those described worldwide. The frequency of the PD allele was estimated at 17.4% for the overall sample, with c.1049A>G and c.*96A>G frequencies of 25.6 and 17.4%, respectively. This study also revealed a high LD between the two ASA-PD variants (r(2) = 0.61). Inter-population analysis revealed similarities in the ASA-PD genetic structure between Tunisians and populations from Middle East with c.*96A>G frequencies being the highest in the world. A significant North vs. South genetic differentiation in the ASA-PD frequency was also observed in Tunisian population who seems genetically intermediate between Africans, Middle-Easterners and Europeans. This is the first report on the allele frequency of the ASA-PD in North Africa, revealing a relatively high frequency of the PD allele among Tunisians. This study gives also evidence on the importance of discriminating ASA-PD allele from pathological mutations causing MLD and supporting enzymatic activity testing with both sulfatiduria determination and genetic testing in the differential diagnosis of MLD in the Tunisian population.


Subject(s)
Cerebroside-Sulfatase/deficiency , Cerebroside-Sulfatase/genetics , Gene Frequency , Adult , Alleles , Black People/genetics , Genotyping Techniques , Haplotypes , Humans , Linkage Disequilibrium , Mutation , Polymorphism, Genetic , Prevalence , Principal Component Analysis , Tunisia/epidemiology , White People/genetics
6.
Am J Hum Biol ; 28(2): 171-80, 2016.
Article in English | MEDLINE | ID: mdl-26179682

ABSTRACT

OBJECTIVES: Consanguinity is common in Tunisia. However, little information exists on its impact on recessive disorders. In this study, we evaluate the impact of consanguineous marriages on the occurrence of some specific autosomal recessive disorders and consider how other factors, such as population substructure and mutation frequency, may be of equal importance in disease prevalence. METHODS: Consanguinity profiles were retrospectively studied among 425 Tunisian patients suffering from autosomal recessive xeroderma pigmentosum, dystrophic epidermolysis bullosa, nonsyndromic retinitis pigmentosa, Gaucher disease, Fanconi anemia, glycogenosis type I, and ichthyosis, and compared to those of a healthy control sample. RESULTS: Consanguinity was observed in 341 cases (64.94%). Consanguinity rates per disease were 75.63, 63.64, 60.64, 61.29, 57.89, 73.33, and 51.28%, respectively. First-cousin marriages were the most common form of consanguinity (48.94%) with the percentages of 55.46, 45.46, 47.87, 48.39, 45.61, 56.66, and 35.90%, respectively. A very high level of geographic endogamy was also observed (93.92%), with the values by disease ranging between 75.86 and 96.64%. We observed an overall excess risk associated to consanguinity of nearly sevenfold which was proportional to the number of affected siblings and the frequency of disease allele in the family. Consanguinity was significantly associated with the first five cited diseases (odds ratio = 24.41, 15.17, 7.5, 5.53, and 5.07, respectively). However, no meaningful effects were reported among the remaining diseases. CONCLUSIONS: This study reveals a variation in the excess risk linked to consanguinity according to the type of disorder, suggesting the potential of cryptic population substructure to contribute to disease incidence in populations with complex social structure like Tunisia. It also emphasizes the role of other health and demographic aspects such as mutation frequency and reproductive replacement in diseases etiology.


Subject(s)
Gene Frequency , Genes, Recessive , Genetic Predisposition to Disease/genetics , Adolescent , Adult , Aged , Alleles , Child , Child, Preschool , Consanguinity , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Prevalence , Tunisia/epidemiology , Young Adult
7.
Endocr Res ; 41(4): 300-309, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26905813

ABSTRACT

AIM OF THE STUDY: Recent genome-wide association studies (GWASs) have identified many genetic variants associated with metabolic syndrome (MetS). However, their contribution to MetS in ethnic groups in Tunisia is largely unexplored. In this study, we aim to examine the associations of related loci with a risk of metabolic syndrome in a sample of Tunisians. MATERIALS AND METHODS: Overall seven polymorphisms rs7265718, rs10401969, rs762861, rs12310367, rs1562398, rs2059807, rs4420638 located at C20orf152, CILP2, LRPAP1, ZNF664, KLF14, INSR, APOE, respectively, were analyzed in 356 samples from the Tunisian population. Anthropometric and biochemical parameters were assessed. Metabolic syndrome was defined according to the International Diabetes Federation (IDF). RESULTS: We find that LRPAP1-rs762861 C allele increases susceptibility to MetS (OR = 1.39, 95% CI = 0.99-1.95, p = 0.041). Separate analysis in men and women revealed the association of rs762861 among females (OR = 1.6, 95% CI = 1.057-2.41, p = 0.021), but not among males (OR = 0.953, 95% CI = 0.51-1.78, p = 0.882). ZNF664-rs12310367 was also found to be associated with body mass index (BMI) in women (p = 0.01) and not in men (p = 0.18). KLF14-rs1562398 was significantly correlated with impaired fasting glucose (p = 0.004) only in men. CONCLUSIONS: Our results reveal new candidate genes for MetS in the Tunisian population and suggest that the genetic basis of this syndrome is gender dependent. Further studies are necessary to understand why these associations differ between males and females.


Subject(s)
Metabolic Syndrome/ethnology , Metabolic Syndrome/genetics , Adult , Aged , Female , Humans , Male , Middle Aged , Polymorphism, Genetic , Tunisia/ethnology
8.
Ann Hum Genet ; 79(6): 402-17, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26420437

ABSTRACT

Runs of homozygosity (ROHs) are extended genomic regions of homozygous genotypes that record populations' mating patterns in the past. We performed microarray genotyping on 15 individuals from a small isolated Tunisian community. We estimated the individual and population genome-wide level of homozygosity from data on ROH above 0.5 Mb in length. We found a high average number of ROH per individual (48.2). The smallest ROH category (0.5-1.49 Mb) represents 0.93% of the whole genome, while medium-size (1.5-4.99 Mb) and long-size ROH (≥5 Mb) cover 1.18% and 0.95%, respectively. We found that genealogical individual inbreeding coefficients (Fped ) based on three- to four-generation pedigrees are not reliable indicators of the current proportion of genome-wide homozygosity inferred from ROH (FROH ) either for 0.5 or 1.5 Mb ROH length thresholds, while identity-by-descent sharing is a function of shared coancestry. This study emphasizes the effect of reproductive isolation and a prolonged practice of consanguinity that limits the genetic heterogeneity. It also provides evidence of both recent and ancient parental relatedness contribution to the current level of genome-wide homozygosity in the studied population. These findings may be useful for evaluation of long-term effects of inbreeding on human health and for future applications of ROHs in identifying recessive susceptibility genes.


Subject(s)
Consanguinity , Genome, Human , Homozygote , Sequence Analysis, DNA , Female , Genotype , Humans , Male , Pedigree , Reproductive Isolation , Tunisia
9.
Hum Hered ; 77(1-4): 167-74, 2014.
Article in English | MEDLINE | ID: mdl-25060280

ABSTRACT

Located at the cross-road between Europe and Africa, Tunisia is a North African country of 11 million inhabitants. Throughout its history, it has been invaded by different ethnic groups. These historical events, and consanguinity, have impacted on the spectrum and frequency of genetic diseases in Tunisia. Investigations of Tunisian families have significantly contributed to elucidation of the genetic bases of rare disorders, providing an invaluable resource of cases due to particular familial structures (large family size, consanguinity and share of common ancestors). In the present study, we report on and review different aspects of consanguinity in the Tunisian population as a case study, representing several features common to neighboring or historically related countries in North Africa and the Middle East. Despite the educational, demographic and behavioral changes that have taken place during the last four decades, familial and geographical endogamy still exist at high frequencies, especially in rural areas. The health implications of consanguinity in Tunisian families include an increased risk of the expression of autosomal recessive diseases and particular phenotypic expressions. With new sequencing technologies, the investigation of consanguineous populations provides a unique opportunity to better evaluate the impact of consanguinity on the genome dynamic and on health, in addition to a better understanding of the genetic bases of diseases.


Subject(s)
Consanguinity , Genetic Diseases, Inborn/epidemiology , Genetics, Population , Genome, Human/genetics , Marriage/statistics & numerical data , Founder Effect , Genetic Diseases, Inborn/genetics , Humans , Tunisia/epidemiology
10.
Ann Hum Genet ; 78(4): 255-63, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24942078

ABSTRACT

Primary congenital glaucoma (PCG) is responsible for a significant proportion of childhood blindness in Tunisia. Early prevention based on genetic diagnosis is therefore required. This study sought to determine the frequency of CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1) mutations in 18 PCG patients, recruited from Central and Southern of Tunisia. Genomic DNA was extracted and the coding regions of CYP1B1 were analysed by direct sequencing. A phylogenetic network of CYP1B1 haplotypes was drawn using the median-joining algorithm. Sequence analysis revealed a "tetra-allelic mutation" (two novel mutations, p.F231I and p.P437A in the homozygous state) in one patient. The healthy members of his family carried those variations on the same allele. Two previously described mutations p.G61E and c.535delG were also identified in the homozygous state in seven and two probands, respectively. Seven single-nucleotide polymorphisms were identified and used to generate haplotypes. Our results showed that the CYP1B1 mutations were present in 55% of Tunisian PCG patients' alleles. Haplotype analysis allowed us to define the proto-haplotype and to confirm historical migratory flows. Establishment of PCG genetic aetiology in Tunisia will improve genetic diagnosis and counselling.


Subject(s)
Cytochrome P-450 CYP1B1/genetics , Glaucoma/congenital , Glaucoma/genetics , Mutation , Consanguinity , Cytochrome P-450 CYP1B1/chemistry , DNA Mutational Analysis , Female , Genotype , Glaucoma/diagnosis , Haplotypes , Humans , Infant , Infant, Newborn , Male , Models, Molecular , Pedigree , Phylogeny , Polymorphism, Single Nucleotide , Protein Conformation , Tunisia
11.
Forensic Sci Int ; 354: 111906, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38128201

ABSTRACT

Forensic DNA Phenotyping can reveal the appearance of an unknown individual by predicting the External Visible Characteristics (EVC) from DNA obtained at the crime scene. Our aim is to characterize the genetic landscape of Human identification markers responsible for EVC among Mediterranean populations compared to other worldwide groups. We conducted an exhaustive search for genes involved in EVC variation. Then, variants located on these genes were extracted from public genotypic data of Mediterranean, American, African and East Asiatic populations. The genetic landscape of these Human identification markers, their allelic distribution and admixture analyses, were determined using plink, R and ADMIXTURE softwares. Our results showed that the Mediterranean populations appear close to the Mexican populations and distinguished from sub Saharan African populations living in the USA and from East Asiatic populations. We highlighted a total of 103454 common variants shared between the studied populations and among them, 25 common variants associated with EVC. Interestingly, genotype frequencies results showed that the rs17646946, rs13016869, rs977588, rs1805008 and rs2240751 variants located respectively in the TCHH, PRKCE, OCA2, MC1R and MFSD12 genes are significantly different between the Mediterranean and Asiatic populations. The genotype frequencies of the variants rs977589 and rs7179994 located in the OCA2 gene, and of rs12913832 and rs2240751 located respectively in HERC2 and MFSD12 genes are significantly different between the Mediterranean and American populations. Our work generates a large number of EVC variants that could be a valuable resource for future studies in the forensic field.


Subject(s)
Albinism, Oculocutaneous , DNA , Polymorphism, Single Nucleotide , Humans , Genotype , Genetic Markers , Alleles , Gene Frequency
12.
Front Pharmacol ; 15: 1380613, 2024.
Article in English | MEDLINE | ID: mdl-38813106

ABSTRACT

Background: Chronic pain is a major socioeconomic burden in the Mediterranean region. However, we noticed an under-representation of these populations in the pharmacogenetics of pain management studies. In this context, we aimed 1) to decipher the pharmacogenetic variant landscape among Mediterranean populations compared to worldwide populations in order to identify therapeutic biomarkers for personalized pain management and 2) to better understand the biological process of pain management through in silico investigation of pharmacogenes pathways. Materials and Methods: We collected genes and variants implicated in pain response using the Prisma guidelines from literature and PharmGK database. Next, we extracted these genes from genotyping data of 829 individuals. Then, we determined the variant distribution among the studied populations using multivariate (MDS) and admixture analysis with R and STRUCTURE software. We conducted a Chi2 test to compare the interethnic frequencies of the identified variants. We used SNPinfo web server, miRdSNP database to identify miRNA-binding sites. In addition, we investigated the functions of the identified genes and variants using pathway enrichment analysis and annotation tools. Finally, we performed docking analysis to assess the impact of variations on drug interactions. Results: We identified 63 variants implicated in pain management. MDS analysis revealed that Mediterranean populations are genetically similar to Mexican populations and divergent from other populations. STRUCTURE analysis showed that Mediterranean populations are mainly composed of European ancestry. We highlighted differences in the minor allele frequencies of three variants (rs633, rs4680, and rs165728) located in the COMT gene. Moreover, variant annotation revealed ten variants with potential miRNA-binding sites. Finally, protein structure and docking analysis revealed that two missense variants (rs4680 and rs6267) induced a decrease in COMT protein activity and affinity for dopamine. Conclusion: Our findings revealed that Mediterranean populations diverge from other ethnic groups. Furthermore, we emphasize the importance of pain-related pathways and miRNAs to better implement these markers as predictors of analgesic responses in the Mediterranean region.

13.
Sci Rep ; 14(1): 5842, 2024 03 10.
Article in English | MEDLINE | ID: mdl-38462643

ABSTRACT

Adverse drug reactions (ADR) represent a significant contributor to morbidity and mortality, imposing a substantial financial burden. Genetic ancestry plays a crucial role in drug response. The aim of this study is to characterize the genetic variability of selected pharmacogenes involved with ADR in Tunisians and Italians, with a comparative analysis against global populations. A cohort of 135 healthy Tunisians and 737 Italians were genotyped using a SNP array. Variants located in 25 Very Important Pharmacogenes implicated in ADR were extracted from the genotyping data. Distribution analysis of common variants in Tunisian and Italian populations in comparison to 24 publicly available worldwide populations was performed using PLINK and R software. Results from Principle Component and ADMIXTURE analyses showed a high genetic similarity among Mediterranean populations, distinguishing them from Sub-Saharan African and Asian populations. The Fst comparative analysis identified 27 variants exhibiting significant differentiation between the studied populations. Among these variants, four SNPs rs622342, rs3846662, rs7294, rs5215 located in SLC22A1, HMGCR, VKORC1 and KCNJ11 genes respectively, are reported to be associated with ethnic variability in drug responses. In conclusion, correlating the frequencies of genotype risk variants with their associated ADRs would enhance drug outcomes and the implementation of personalized medicine in the studied populations.


Subject(s)
European People , North African People , Polymorphism, Single Nucleotide , Precision Medicine , Humans , Gene Frequency , Genotype , Italy , Vitamin K Epoxide Reductases/genetics
14.
Database (Oxford) ; 20242024 Jan 10.
Article in English | MEDLINE | ID: mdl-38204360

ABSTRACT

There is growing evidence that comprehensive and harmonized metadata are fundamental for effective public data reusability. However, it is often challenging to extract accurate metadata from public repositories. Of particular concern is the metagenomic data related to African individuals, which often omit important information about the particular features of these populations. As part of a collaborative consortium, H3ABioNet, we created a web portal, namely the African Human Microbiome Portal (AHMP), exclusively dedicated to metadata related to African human microbiome samples. Metadata were collected from various public repositories prior to cleaning, curation and harmonization according to a pre-established guideline and using ontology terms. These metadata sets can be accessed at https://microbiome.h3abionet.org/. This web portal is open access and offers an interactive visualization of 14 889 records from 70 bioprojects associated with 72 peer reviewed research articles. It also offers the ability to download harmonized metadata according to the user's applied filters. The AHMP thereby supports metadata search and retrieve operations, facilitating, thus, access to relevant studies linked to the African Human microbiome. Database URL:  https://microbiome.h3abionet.org/.


Subject(s)
Metadata , Microbiota , Humans , Metagenome , Databases, Factual , Metagenomics , Microbiota/genetics
15.
Mol Biol Rep ; 40(7): 4197-202, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23649758

ABSTRACT

Genetic deficiency of the glycogen debranching enzyme causes glycogen storage disease type III, an autosomal recessive inherited disorder. The gene encoding this enzyme is designated as AGL gene. The disease is characterized by fasting hypoglycemia, hepatomegaly, growth retardation, progressive myopathy and cardiomyopathy. In the present study, we present clinical features and molecular characterization of two consanguineous Tunisian siblings suffering from Glycogen storage disease type III. The full coding exons of the AGL gene and their corresponding exon-intron boundaries were amplified for the patients and their parents. Gene sequencing identified a novel single point mutation at the conserved polypyrimidine tract of intron 21 in a homozygous state (IVS21-8A>G). This variant cosegregated with the disease and was absent in 102 control chromosomes. In silico analysis using online resources showed a decreased score of the acceptor splice site of intron 21. RT-PCR analysis of the AGL splicing pattern revealed a 7 bp sequence insertion between exon 21 and exon 22 due to the creation of a new 3' splice site. The predicted mutant enzyme was truncated by the loss of 637 carboxyl-terminal amino acids as a result of premature termination. This novel mutation is the first mutation identified in the region of Bizerte and the tenth AGL mutation identified in Tunisia. Screening for this mutation can improve the genetic counseling and prenatal diagnosis of GSD III.


Subject(s)
Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/genetics , Introns , Point Mutation , Consanguinity , DNA Mutational Analysis , Female , Gene Order , Glycogen Storage Disease Type III/metabolism , Humans , Infant , Infant, Newborn , Male , RNA Splice Sites , Siblings , Tunisia
16.
Front Aging Neurosci ; 15: 1114810, 2023.
Article in English | MEDLINE | ID: mdl-37342358

ABSTRACT

Introduction: Alzheimer's disease (AD) and Type 2 diabetes (T2D) are both age-associated diseases. Identification of shared genes could help develop early diagnosis and preventive strategies. Although genetic background plays a crucial role in these diseases, we noticed an underrepresentation tendency of North African populations in omics studies. Materials and methods: First, we conducted a comprehensive review of genes and pathways shared between T2D and AD through PubMed. Then, the function of the identified genes and variants was investigated using annotation tools including PolyPhen2, RegulomeDB, and miRdSNP. Pathways enrichment analyses were performed with g:Profiler and EnrichmentMap. Next, we analyzed variant distributions in 16 worldwide populations using PLINK2, R, and STRUCTURE software. Finally, we performed an inter-ethnic comparison based on the minor allele frequency of T2D-AD common variants. Results: A total of 59 eligible papers were included in our study. We found 231 variants and 363 genes shared between T2D and AD. Variant annotation revealed six single nucleotide polymorphisms (SNP) with a high pathogenic score, three SNPs with regulatory effects on the brain, and six SNPs with potential effects on miRNA-binding sites. The miRNAs affected were implicated in T2D, insulin signaling pathways, and AD. Moreover, replicated genes were significantly enriched in pathways related to plasma protein binding, positive regulation of amyloid fibril deposition, microglia activation, and cholesterol metabolism. Multidimensional screening performed based on the 363 shared genes showed that main North African populations are clustered together and are divergent from other worldwide populations. Interestingly, our results showed that 49 SNP associated with T2D and AD were present in North African populations. Among them, 11 variants located in DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, CST9, and PLCG1 genes display significant differences in risk allele frequencies between North African and other populations. Conclusion: Our study highlighted the complexity and the unique molecular architecture of North African populations regarding T2D-AD shared genes. In conclusion, we emphasize the importance of T2D-AD shared genes and ethnicity-specific investigation studies for a better understanding of the link behind these diseases and to develop accurate diagnoses using personalized genetic biomarkers.

17.
Front Pediatr ; 11: 1132023, 2023.
Article in English | MEDLINE | ID: mdl-37744435

ABSTRACT

Background: Spondylocostal dysostosis is a rare genetic disorder caused by mutations in DLL3, MESP2, LFNG, HES7, TBX6, and RIPPLY2. A particular form of this disorder characterized by the association of spondylocostal dysostosis with multiple pterygia has been reported and called spondylospinal thoracic dysostosis. Both disorders affect the spine and ribs, leading to abnormal development of the spine. Spondylospinal thoracic dysostosis is a rare syndrome characterized by the association of multiple vertebral segmentation defects, thoracic cage deformity, and multiple pterygia. This syndrome can be considered a different form of the described spondylocostal dysostosis. However, no genetic testing has been conducted for this rare disorder so far. Methods: We report here the case of an 18-month-old female patient presenting the clinical and radiological features of spondylospinal thoracic dysostosis. To determine the underlying genetic etiology, whole exome sequencing (WES) and Sanger sequencing were performed. Results: Using WES, we identified a variant in the TPM2 gene c. 628C>T, already reported in the non-lethal form of multiple pterygium syndrome. In addition, following the analysis of WES data, using bioinformatic tools, for oligogenic diseases, we identified candidate modifier genes, CAP2 and ADCY6, that could impact the clinical manifestations. Conclusion: We showed a potential association between TPM2 and the uncommon spondylocostal dysostosis phenotype that would require further validation on larger cohort.

18.
Biosci Rep ; 43(9)2023 09 27.
Article in English | MEDLINE | ID: mdl-37669144

ABSTRACT

Gut microbiota plays a key role in the regulation of metabolism and immunity. We investigated the profile of gut microbiota and the impact of dietary intake on gut bacterial distribution in diabetic and healthy Tunisian subjects, aiming to identify a dysbiotic condition, hence opening the way to restore eubiosis and facilitate return to health. In the present research, we enrolled 10 type 1 diabetic (T1D), 10 type 2 diabetic (T2D) patients and 13 healthy (H) subjects. Illumina Miseq technology was used to sequence V3-V4 hypervariable regions of bacterial 16SrRNA gene. Data were analyzed referring to QIIME 2 pipeline. RStudio software was used to explore the role of nutrition in gut bacterial distribution. At the phylum level, we identified an imbalanced gut microbiota composition in diabetic patients marked by a decrease in the proportion of Firmicutes and an increase in the abundance of Bacteroidetes compared with H subjects. We observed higher amounts of Fusobacteria and a decline in the levels of TM7 phyla in T1D patients compared with H subjects. However, we revealed a decrease in the proportions of Verrucomicrobia in T2D patients compared with H subjects. At the genus level, T2D subjects were more affected by gut microbiota alteration, showing a reduction in the relative abundance of Faecalibacterium, Akkermansia, Clostridium, Blautia and Oscillibacter, whereas T1D group shows a decrease in the proportion of Blautia. The gut bacteria distribution was mainly affected by fats and carbohydrates consumption. Gut microbiota composition was altered in Tunisian diabetic patients and affected by dietary habits.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Nutritional Status , Gastrointestinal Microbiome/genetics , Bacteria/genetics
19.
Front Genet ; 14: 1224284, 2023.
Article in English | MEDLINE | ID: mdl-38162681

ABSTRACT

Introduction: Monogenic diabetes (MD) accounts for 3%-6% of all cases of diabetes. This prevalence is underestimated due to its overlapping clinical features with type 1 and type 2 diabetes. Hence, genetic testing is the most appropriate tool for obtaining an accurate diagnosis. In Tunisia, few cohorts of MD have been investigated until now. The aim of this study is to search for pathogenic variants among 11 patients suspected of having MD in Tunisia using whole-exome sequencing (WES). Materials and methods: WES was performed in 11 diabetic patients recruited from a collaborating medical center. The pathogenicity of genetic variation was assessed using combined filtering and bioinformatics prediction tools. The online ORVAL tool was used to predict the likelihood of combinations of pathogenic variations. Then, Sanger sequencing was carried out to confirm likely pathogenic predicted variants among patients and to check for familial segregation. Finally, for some variants, we performed structural modeling to study their impact on protein function. Results: We identified novel variants related to MD in Tunisia. Pathogenic variants are located in several MODY and non-MODY genes. We highlighted the presence of syndromic forms of diabetes, including the Bardet-Biedl syndrome, Alström syndrome, and severe insulin resistance, as well as the presence of isolated diabetes with significantly reduced penetrance for Wolfram syndrome-related features. Idiopathic type 1 diabetes was also identified in one patient. Conclusion: In this study, we emphasized the importance of genetic screening for MD in patients with a familial history of diabetes, mainly among admixed and under-represented populations living in low- and middle-income countries. An accurate diagnosis with molecular investigation of MD may improve the therapeutic choice for better management of patients and their families. Additional research and rigorous investigations are required to better understand the physiopathological mechanisms of MD and implement efficient therapies that take into account genomic context and other related factors.

20.
Front Endocrinol (Lausanne) ; 14: 1293124, 2023.
Article in English | MEDLINE | ID: mdl-38192426

ABSTRACT

Introduction: Type 2 diabetes (T2D) is a multifactorial disease involving genetic and environmental components. Several genome-wide association studies (GWAS) have been conducted to decipher potential genetic aberrations promoting the onset of this metabolic disorder. These GWAS have identified over 400 associated variants, mostly in the intronic or intergenic regions. Recently, a growing number of exome genotyping or exome sequencing experiments have identified coding variants associated with T2D. Such studies were mainly conducted in European populations, and the few candidate-gene replication studies in North African populations revealed inconsistent results. In the present study, we aimed to discover the coding genetic etiology of T2D in the Tunisian population. Methods: We carried out a pilot Exome Wide Association Study (EWAS) on 50 Tunisian individuals. Single variant analysis was performed as implemented in PLINK on potentially deleterious coding variants. Subsequently, we applied gene-based and gene-set analyses using MAGMA software to identify genes and pathways associated with T2D. Potential signals were further replicated in an existing large in-silico dataset, involving up to 177116 European individuals. Results: Our analysis revealed, for the first time, promising associations between T2D and variations in MYORG gene, implicated in the skeletal muscle fiber development. Gene-set analysis identified two candidate pathways having nominal associations with T2D in our study samples, namely the positive regulation of neuron apoptotic process and the regulation of mucus secretion. These two pathways are implicated in the neurogenerative alterations and in the inflammatory mechanisms of metabolic diseases. In addition, replication analysis revealed nominal associations of the regulation of beta-cell development and the regulation of peptidase activity pathways with T2D, both in the Tunisian subjects and in the European in-silico dataset. Conclusions: The present study is the first EWAS to investigate the impact of single genetic variants and their aggregate effects on T2D risk in Africa. The promising disease markers, revealed by our pilot EWAS, will promote the understanding of the T2D pathophysiology in North Africa as well as the discovery of potential treatments.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Tunisia/epidemiology , Diabetes Mellitus, Type 2/genetics , Exome/genetics , Genome-Wide Association Study , Introns
SELECTION OF CITATIONS
SEARCH DETAIL