Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Immunol ; 207(9): 2245-2254, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34561227

ABSTRACT

Targeting interactions between α4ß7 integrin and endothelial adhesion molecule MAdCAM-1 to inhibit lymphocyte migration to the gastrointestinal tract is an effective therapy in inflammatory bowel disease (IBD). Following lymphocyte entry into the mucosa, a subset of these cells expresses αEß7 integrin, which is expressed on proinflammatory lymphocytes, to increase cell retention. The factors governing lymphocyte migration into the intestinal mucosa and αE integrin expression in healthy subjects and IBD patients remain incompletely understood. We evaluated changes in factors involved in lymphocyte migration and differentiation within tissues. Both ileal and colonic tissue from active IBD patients showed upregulation of ICAM-1, VCAM-1, and MAdCAM-1 at the gene and protein levels compared with healthy subjects and/or inactive IBD patients. ß1 and ß7 integrin expression on circulating lymphocytes was similar across groups. TGF-ß1 treatment induced expression of αE on both ß7+ and ß7- T cells, suggesting that cells entering the mucosa independently of MAdCAM-1/α4ß7 can become αEß7+ ITGAE gene polymorphisms did not alter protein induction following TGF-ß1 stimulation. Increased phospho-SMAD3, which is directly downstream of TGF-ß, and increased TGF-ß-responsive gene expression were observed in the colonic mucosa of IBD patients. Finally, in vitro stimulation experiments showed that baseline ß7 expression had little effect on cytokine, chemokine, transcription factor, and effector molecule gene expression in αE+ and αE- T cells. These findings suggest cell migration to the gut mucosa may be altered in IBD and α4ß7-, and α4ß7+ T cells may upregulate αEß7 in response to TGF-ß once within the gut mucosa.


Subject(s)
Antigens, CD/metabolism , Inflammatory Bowel Diseases/immunology , Integrin alpha Chains/metabolism , Integrin beta Chains/metabolism , Intestinal Mucosa/immunology , Receptors, Lymphocyte Homing/metabolism , T-Lymphocytes/immunology , Adult , Aged , Cell Movement , Female , Humans , Integrin beta Chains/genetics , Male , Middle Aged , Signal Transduction , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
2.
Gut ; 66(12): 2063-2068, 2017 12.
Article in English | MEDLINE | ID: mdl-27590995

ABSTRACT

OBJECTIVE: Both endoscopy and histology may be included in the definition of mucosal healing in UC. This study aimed to establish the association between patient-reported outcomes, specifically symptom measures, and the presence of inflammation as measured by endoscopy and histology in UC. DESIGN: Using patient data from an observational multicentre study of UC (n=103), rectal bleeding (RB) and stool frequency (SF) symptom subscores of the Mayo Clinic Score (MCS) were compared with the endoscopic subscore (MCSe) and histology. Faecal calprotectin and biopsy cytokine expression were also evaluated. RESULTS: When identifying UC patients with inactive disease, RB scores were superior to SF scores and the combination (sensitivity/specificity: MCSe=0/1, RB 77%/81%, SF 62%/95%, RB+SF 54%/95%; MCSe=0, RB 87%/66%, SF 76%/83%, RB+SF 68%/86%). Across different definitions of mucosal healing (MCSe≤1; 0; or 0 plus inactive histology), a larger subset of patients reported increased SF (39%, 25% and 27%, respectively) compared with RB (24%, 13% and 10%). Faecal calprotectin and inflammatory cytokine expression were higher in patients with active disease compared with patients with mucosal healing, but there were no differences between patients using increasingly stringent definitions of mucosal healing. CONCLUSIONS: Endoscopically inactive disease is associated with absence of RB but not with complete normalisation of SF. Achieving histological remission did not improve symptomatic relief. In addition, in these patients, higher inflammatory biomarker levels were not observed. These data suggest that non-inflammatory changes, such as bowel damage, may contribute to SF in UC.


Subject(s)
Colitis, Ulcerative/pathology , Colonoscopy , Patient Reported Outcome Measures , Adult , Biomarkers/metabolism , Biopsy , Cytokines/metabolism , Feces/chemistry , Female , Humans , Intestinal Mucosa/metabolism , Leukocyte L1 Antigen Complex/metabolism , Male , Retrospective Studies , Sensitivity and Specificity , Wound Healing/physiology
3.
Gastroenterology ; 150(2): 477-87.e9, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26522261

ABSTRACT

BACKGROUND & AIMS: Etrolizumab is a humanized monoclonal antibody against the ß7 integrin subunit that has shown efficacy vs placebo in patients with moderate to severely active ulcerative colitis (UC). Patients with colon tissues that expressed high levels of the integrin αE gene (ITGAE) appeared to have the best response. We compared differences in colonic expression of ITGAE and other genes between patients who achieved clinical remission with etrolizumab vs those who did. METHODS: We performed a retrospective analysis of data collected from 110 patients with UC who participated in a phase 2 placebo-controlled trial of etrolizumab, as well as from 21 patients with UC or without inflammatory bowel disease (controls) enrolled in an observational study at a separate site. Colon biopsies were collected from patients in both studies and analyzed by immunohistochemistry and gene expression profiling. Mononuclear cells were isolated and analyzed by flow cytometry. We identified biomarkers associated with response to etrolizumab. In the placebo-controlled trial, clinical remission was defined as total Mayo Clinic Score ≤2, with no individual subscore >1, and mucosal healing was defined as endoscopic score ≤1. RESULTS: Colon tissues collected at baseline from patients who had a clinical response to etrolizumab expressed higher levels of T-cell-associated genes than patients who did not respond (P < .05). Colonic CD4(+) integrin αE(+) cells from patients with UC expressed higher levels of granzyme A messenger RNA (GZMA mRNA) than CD4(+) αE(-) cells (P < .0001); granzyme A and integrin αE protein were detected in the same cells. Of patients receiving 100 mg etrolizumab, a higher proportion of those with high levels of GZMA mRNA (41%) or ITGAE mRNA (38%) than those with low levels of GZMA (6%) or ITGAE mRNA (13%) achieved clinical remission (P < .05) and mucosal healing (41% GZMA(high) vs 19% GZMA(low) and 44% ITGAE(high) vs 19% ITGAE(low)). Compared with ITGAE(low) and GZMA(low) patients, patients with ITGAE(high) and GZMA(high) had higher baseline numbers of epithelial crypt-associated integrin αE(+) cells (P < .01 for both), but a smaller number of crypt-associated integrin αE(+) cells after etrolizumab treatment (P < .05 for both). After 10 weeks of etrolizumab treatment, expression of genes associated with T-cell activation and genes encoding inflammatory cytokines decreased by 40%-80% from baseline (P < .05) in patients with colon tissues expressing high levels of GZMA at baseline. CONCLUSIONS: Levels of GZMA and ITGAE mRNAs in colon tissues can identify patients with UC who are most likely to benefit from etrolizumab; expression levels decrease with etrolizumab administration in biomarker(high) patients. Larger, prospective studies of markers are needed to assess their clinical value.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD/metabolism , Colitis, Ulcerative/drug therapy , Colon/drug effects , Gastrointestinal Agents/therapeutic use , Granzymes/metabolism , Integrin alpha Chains/metabolism , Antigens, CD/genetics , Biopsy , Clinical Trials, Phase II as Topic , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/enzymology , Colitis, Ulcerative/genetics , Colon/enzymology , Colon/pathology , Gene Expression Profiling/methods , Granzymes/genetics , Humans , Immunohistochemistry , Integrin alpha Chains/genetics , Predictive Value of Tests , RNA, Messenger/metabolism , Randomized Controlled Trials as Topic , Remission Induction , Retrospective Studies , Time Factors , Treatment Outcome , Wound Healing/drug effects
4.
Immunity ; 28(6): 729-31, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18549794

ABSTRACT

In this issue of Immunity, Chaturvedi et al. (2008) describe a mechanism for the bridging of innate and adaptive immune receptor functions. In their model, B cell-receptor signaling induces the fusion of Toll-like receptor 9 (TLR9)-containing endosomes with internalized signaling-competent BCR into autophagosomes.


Subject(s)
Phagosomes/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Toll-Like Receptor 9/metabolism , Animals , Autoimmunity , Humans , Lymphocyte Activation , Phagosomes/immunology , Receptors, Antigen, B-Cell/immunology , Toll-Like Receptor 9/immunology
5.
Clin Immunol ; 161(1): 11-22, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25934386

ABSTRACT

Chronic inflammatory disorders are complex and characterized by significant heterogeneity in molecular, pathological, and clinical features. This heterogeneity poses challenges for the development of targeted molecular interventions for these disorders, as not all patients with a given clinical diagnosis have disease driven by a single dominant molecular pathway, hence not all patients will benefit equally from a given intervention. Biomarkers related to molecular manifestations of disease are increasingly being applied to enable stratified approaches to drug development. Biomarkers may be used to identify which patients are most likely to benefit from an intervention (predictive), identify patients at increased risk of disease progression (prognostic), and monitor biological responsiveness to an intervention (pharmacodynamic). Here we consider how biomarker-guided stratification of patients may increase benefit from targeted therapies for asthma, rheumatoid arthritis and inflammatory bowel diseases.


Subject(s)
Arthritis, Rheumatoid/metabolism , Asthma/metabolism , Biomarkers/metabolism , Colitis, Ulcerative/metabolism , Adalimumab/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Asthma/diagnosis , Asthma/drug therapy , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/drug therapy , Humans , Molecular Targeted Therapy/methods , Treatment Outcome
6.
J Crohns Colitis ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836628

ABSTRACT

BACKGROUND AND AIMS: The gut microbiota contributes to aberrant inflammation in inflammatory bowel disease, but the bacterial factors causing or exacerbating inflammation are not fully understood. Further, the predictive or prognostic value of gut microbial biomarkers for remission in response to biologic therapy is unclear. METHODS: We perform whole metagenomic sequencing of 550 stool samples from 287 ulcerative colitis patients from a large phase 3 head-to-head study of infliximab and etrolizumab. RESULTS: We identify several bacterial species in baseline and/or post-treatment samples that associate with clinical remission. These include previously described associations (Faecalibacterium prausnitzii_F) as well as new associations with remission to biologic therapy (Flavonifractor plautii). We build multivariate models and find that gut microbial species are better predictors for remission than clinical variables alone. Finally, we describe patient groups that differ in microbiome composition and remission rate after induction therapy, suggesting the potential utility of microbiome-based endotyping. CONCLUSIONS: In this large study of ulcerative colitis patients, we show that few individual species associate strongly with clinical remission, but multivariate models including microbiome can predict clinical remission and have better predictive power compared to clinical data alone.

7.
J Crohns Colitis ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267224

ABSTRACT

BACKGROUND AND AIMS: The goal was to identify microbial drivers of IBD, by investigating mucosal-associated bacteria and their detrimental products in IBD patients. METHODS: We directly cultured bacterial communities from mucosal biopsies from pediatric gastrointestinal patients and examined for pathogenicity-associated traits. Upon identifying C. perfringens as toxigenic bacteria present in mucosal biopsies, we isolated strains and further characterized toxicity and prevalence. RESULTS: Mucosal biopsy microbial composition differed from corresponding stool samples. C. perfringens was present in 8 of 9 patients' mucosal biopsies, correlating with hemolytic activity, while not in all corresponding stool samples. Large IBD datasets showed higher C. perfringens prevalence in stool samples of IBD adults (18.7-27.1%) versus healthy (5.1%). In vitro, C. perfringens supernatants were toxic to cell types beneath the intestinal epithelial barrier, including endothelial, neuroblasts, and neutrophils, while impact on epithelial cells was less pronounced, suggesting C. perfringens may be damaging particularly when barrier integrity is compromised. Further characterization using purified toxins and genetic insertion mutants confirmed PFO toxin was sufficient for toxicity. Toxin RNA signatures were found in the original patient biopsies by PCR, suggesting intestinal production. C. perfringens supernatants also induced activation of neuroblast and dorsal root ganglion neurons in vitro, suggesting C. perfringens in inflamed mucosal tissue may directly contribute to abdominal pain, a frequent IBD symptom. CONCLUSIONS: Gastrointestinal carriage of certain toxigenic C. perfringens may have an important pathogenic impact on IBD patients. These findings support routine monitoring of C. perfringens and PFO toxins and potential treatment in patients.

8.
Am J Gastroenterol ; 108(12): 1891-900, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24126633

ABSTRACT

OBJECTIVES: In Crohn's disease (CD), clinical symptoms correspond poorly to inflammatory disease activity. Biomarkers reflective of mucosal and bowel wall inflammation would be useful to monitor disease activity. The EMBARK study evaluated disease activity in patients with ulcerative colitis (UC) and CD, and used endoscopy with or without cross-sectional imaging for biomarker discovery. METHODS: UC (n=107) and CD (n=157) patients were characterized and underwent ileocolonoscopy (ICO). A subset of CD patients (n=66) also underwent computed tomography enterography (CTE). ICO and CTE were scored by a gastroenterologist and radiologist who incorporated findings of inflammation into a single score (ICO-CTE) for patients that underwent both procedures. Serum and fecal biomarkers were evaluated for association with the Mayo Clinic endoscopy score in UC patients and with ICO alone or ICO-CTE in CD patients. Individual biomarkers with a moderate degree of correlation (P≤0.3) were evaluated using multivariate analysis with model selection using a stepwise procedure. RESULTS: In UC, ordinal logistic regression using Mayo Clinic endoscopy subscore selected the combination of fecal calprotectin and serum matrix metalloproteinase 9 (MMP9; pseudo R(2)=0.353). In CD, we found that use of the ICO-CTE increased specificity of known biomarkers. Using ICO-CTE as the dependent variable for biomarker discovery, the selected biomarkers were the combination of fecal calprotectin, serum MMP9, and serum IL-22 (r=0.699). CONCLUSIONS: Incorporation of both ICO and CTE into a single measure increased biomarker performance in CD. Combinations of fecal calprotectin and serum MMP9 for UC, and combinations of fecal calprotectin, serum MMP9, and serum interleukin-22 in CD, demonstrated the strongest association with imaging/endoscopy-defined inflammation.


Subject(s)
Biomarkers/metabolism , Crohn Disease/metabolism , Feces/chemistry , Interleukins/blood , Leukocyte L1 Antigen Complex/metabolism , Matrix Metalloproteinase 9/blood , Adolescent , Adult , Aged , Colonoscopy , Crohn Disease/diagnostic imaging , Female , Humans , Male , Middle Aged , Tomography, X-Ray Computed , Interleukin-22
9.
J Immunol ; 187(3): 1097-105, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21697456

ABSTRACT

Programmed death-1 ligand 1 (PD-L1) is a coinhibitory molecule that negatively regulates multiple tolerance checkpoints. In the NOD mouse model, PD-L1 regulates the development of diabetes. PD-L1 has two binding partners, programmed death-1 and B7-1, but the significance of the PD-L1:B7-1 interaction in regulating self-reactive T cell responses is not yet clear. To investigate this issue in NOD mice, we have compared the effects of two anti-PD-L1 Abs that have different blocking activities. Anti-PD-L1 mAb 10F.2H11 sterically and functionally blocks only PD-L1:B7-1 interactions, whereas anti-PD-L1 mAb 10F.9G2 blocks both PD-L1:B7-1 and PD-L1:programmed death-1 interactions. Both Abs had potent, yet distinct effects in accelerating diabetes in NOD mice: the single-blocker 10F.2H11 mAb was more effective at precipitating diabetes in older (13-wk-old) than in younger (6- to 7-wk-old) mice, whereas the dual-blocker 10F.9G2 mAb rapidly induced diabetes in NOD mice of both ages. Similarly, 10F.2H11 accelerated diabetes in recipients of T cells from diabetic, but not prediabetic mice, whereas 10F.9G2 was effective in both settings. Both anti-PD-L1 mAbs precipitated diabetes in adoptive transfer models of CD4(+) and CD8(+) T cell-driven diabetes. Taken together, these data demonstrate that the PD-L1:B7-1 pathway inhibits potentially pathogenic self-reactive effector CD4(+) and CD8(+) T cell responses in vivo, and suggest that the immunoinhibitory functions of this pathway may be particularly important during the later phases of diabetogenesis.


Subject(s)
B7-1 Antigen/physiology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/prevention & control , Growth Inhibitors/physiology , Membrane Glycoproteins/physiology , Peptides/physiology , Signal Transduction/immunology , Adoptive Transfer , Animals , Antibodies, Blocking/administration & dosage , Antigens, CD/physiology , Apoptosis Regulatory Proteins/physiology , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , B7-1 Antigen/genetics , B7-1 Antigen/immunology , B7-H1 Antigen , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/transplantation , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/transplantation , Diabetes Mellitus, Type 1/genetics , Female , Ligands , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Peptides/deficiency , Peptides/immunology , Programmed Cell Death 1 Receptor , Protein Binding/immunology , Signal Transduction/genetics
10.
Microbiome ; 11(1): 47, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36894983

ABSTRACT

BACKGROUND: IL-22 is induced by aryl hydrocarbon receptor (AhR) signaling and plays a critical role in gastrointestinal barrier function through effects on antimicrobial protein production, mucus secretion, and epithelial cell differentiation and proliferation, giving it the potential to modulate the microbiome through these direct and indirect effects. Furthermore, the microbiome can in turn influence IL-22 production through the synthesis of L-tryptophan (L-Trp)-derived AhR ligands, creating the prospect of a host-microbiome feedback loop. We evaluated the impact IL-22 may have on the gut microbiome and its ability to activate host AhR signaling by observing changes in gut microbiome composition, function, and AhR ligand production following exogenous IL-22 treatment in both mice and humans. RESULTS: Microbiome alterations were observed across the gastrointestinal tract of IL-22-treated mice, accompanied by an increased microbial functional capacity for L-Trp metabolism. Bacterially derived indole derivatives were increased in stool from IL-22-treated mice and correlated with increased fecal AhR activity. In humans, reduced fecal concentrations of indole derivatives in ulcerative colitis (UC) patients compared to healthy volunteers were accompanied by a trend towards reduced fecal AhR activity. Following exogenous IL-22 treatment in UC patients, both fecal AhR activity and concentrations of indole derivatives increased over time compared to placebo-treated UC patients. CONCLUSIONS: Overall, our findings indicate IL-22 shapes gut microbiome composition and function, which leads to increased AhR signaling and suggests exogenous IL-22 modulation of the microbiome may have functional significance in a disease setting. Video Abstract.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Mice , Receptors, Aryl Hydrocarbon/metabolism , Interleukins , Indoles , Interleukin-22
11.
Cell Rep Med ; 4(8): 101130, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37490914

ABSTRACT

Signal regulatory protein (SIRPα) is an immune inhibitory receptor expressed by myeloid cells to inhibit immune cell phagocytosis, migration, and activation. Despite the progress of SIRPα and CD47 antagonist antibodies to promote anti-cancer immunity, it is not yet known whether SIRPα receptor agonism could restrain excessive autoimmune tissue inflammation. Here, we report that neutrophil- and monocyte-associated genes including SIRPA are increased in inflamed tissue biopsies from patients with rheumatoid arthritis and inflammatory bowel diseases, and elevated SIRPA is associated with treatment-refractory ulcerative colitis. We next identify an agonistic anti-SIRPα antibody that exhibits potent anti-inflammatory effects in reducing neutrophil and monocyte chemotaxis and tissue infiltration. In preclinical models of arthritis and colitis, anti-SIRPα agonistic antibody ameliorates autoimmune joint inflammation and inflammatory colitis by reducing neutrophils and monocytes in tissues. Our work provides a proof of concept for SIRPα receptor agonism for suppressing excessive innate immune activation and chronic inflammatory disease treatment.


Subject(s)
Colitis , Neoplasms , Humans , Phagocytosis , Neoplasms/drug therapy , Neutrophils/metabolism , Inflammation/pathology , Colitis/metabolism
12.
J Exp Med ; 203(4): 883-95, 2006 Apr 17.
Article in English | MEDLINE | ID: mdl-16606670

ABSTRACT

Programmed death 1 (PD-1), an inhibitory receptor expressed on activated lymphocytes, regulates tolerance and autoimmunity. PD-1 has two ligands: PD-1 ligand 1 (PD-L1), which is expressed broadly on hematopoietic and parenchymal cells, including pancreatic islet cells; and PD-L2, which is restricted to macrophages and dendritic cells. To investigate whether PD-L1 and PD-L2 have synergistic or unique roles in regulating T cell activation and tolerance, we generated mice lacking PD-L1 and PD-L2 (PD-L1/PD-L2(-/-) mice) and compared them to mice lacking either PD-L. PD-L1 and PD-L2 have overlapping functions in inhibiting interleukin-2 and interferon-gamma production during T cell activation. However, PD-L1 has a unique and critical role in controlling self-reactive T cells in the pancreas. Our studies with bone marrow chimeras demonstrate that PD-L1/PD-L2 expression only on antigen-presenting cells is insufficient to prevent the early onset diabetes that develops in PD-L1/PD-L2(-/-) non-obese diabetic mice. PD-L1 expression in islets protects against immunopathology after transplantation of syngeneic islets into diabetic recipients. PD-L1 inhibits pathogenic self-reactive CD4+ T cell-mediated tissue destruction and effector cytokine production. These data provide evidence that PD-L1 expression on parenchymal cells rather than hematopoietic cells protects against autoimmune diabetes and point to a novel role for PD-1-PD-L1 interactions in mediating tissue tolerance.


Subject(s)
B7-1 Antigen/biosynthesis , Immune Tolerance , Membrane Glycoproteins/biosynthesis , T-Lymphocytes/immunology , Animals , B7-1 Antigen/genetics , B7-1 Antigen/physiology , B7-H1 Antigen , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Diabetes Mellitus, Type 1/genetics , Hematopoietic Stem Cells/metabolism , Immune Tolerance/genetics , Immune Tolerance/immunology , Interferon-gamma , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Membrane Glycoproteins/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Organ Specificity/immunology , Peptides/deficiency , Peptides/genetics , Peptides/physiology , Programmed Cell Death 1 Ligand 2 Protein , T-Lymphocytes/metabolism
13.
Gastroenterology ; 151(1): 214, 2016 07.
Article in English | MEDLINE | ID: mdl-27243639
14.
PLoS Pathog ; 6(2): e1000766, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20174557

ABSTRACT

Chronic immune activation and inflammation (e.g., as manifest by production of type I interferons) are major determinants of disease progression in primate lentivirus infections. To investigate the impact of such activation on intrathymic T-cell production, we studied infection of the human thymus implants of SCID-hu Thy/Liv mice with X4 and R5 HIV. X4 HIV was observed to infect CD3(-)CD4(+)CD8(-)CXCR4(+)CCR5(-) intrathymic T-cell progenitors (ITTP) and to abrogate thymopoiesis. R5 HIV, by contrast, first established a nonpathogenic infection of thymic macrophages and then, after many weeks, began to replicate in ITTP. We demonstrate here that the tropism of R5 HIV is expanded and pathogenicity enhanced by upregulation of CCR5 on these key T-cell progenitors. Such CCR5 induction was mediated by interferon-alpha (IFN-alpha) in both thymic organ cultures and in SCID-hu mice, and antibody neutralization of IFN-alpha in R5 HIV-infected SCID-hu mice inhibited both CCR5 upregulation and infection of the T-cell progenitors. These observations suggest a mechanism by which IFN-alpha production may paradoxically expand the tropism of R5 HIV and, in so doing, accelerate disease progression.


Subject(s)
HIV Infections/immunology , HIV/physiology , Hematopoietic Stem Cells/virology , Interferon-alpha/immunology , Receptors, CCR5/biosynthesis , Viral Tropism/physiology , Animals , Cell Separation , Disease Progression , Flow Cytometry , HIV Infections/metabolism , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Humans , Mice , Mice, SCID , Receptors, CCR5/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology , Thymus Gland/cytology , Thymus Gland/immunology , Thymus Gland/virology , Up-Regulation
15.
Clin Transl Gastroenterol ; 13(7): e00505, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35905415

ABSTRACT

INTRODUCTION: Magnetic resonance enterography (MRE) is useful for detecting bowel strictures, whereas a number of imaging biomarkers may reflect severity of fibrosis burden in Crohn's disease (CD). This study aimed to verify the association of MRE metrics with histologic fibrosis independent of inflammation. METHODS: This prospective European multicenter study performed MRE imaging on 60 patients with CD with bowel strictures before surgical resection. Locations of 61 histological samples were annotated on MRE examinations, followed by central readings using the Chiorean score and measurement of delayed gain of enhancement (DGE), magnetization transfer ratio, T2-weighted MRI sequences (T2R), apparent diffusion coefficient (ADC), and the magnetic resonance index of activity (MaRIA). Correlations of histology and MRE metrics were assessed. Least Absolute Shrinkage and Selection Operator and receiver operator characteristic (ROC) curve analyses were used to select composite MRE scores predictive of histology and to estimate their predictive value. RESULTS: ADC and MaRIA correlated with fibrosis (R = -0.71, P < 0.0001, and 0.59, P < 0.001) and more moderately with inflammation (R = -0.35, P < 0.01, and R = 0.53, P < 0.001). Lower or no correlations of fibrosis or inflammation were found with DGE, magnetization transfer ratio, or T2R. Least Absolute Shrinkage and Selection Operator and ROC identified a composite score of MaRIA, ADC, and DGE as a very good predictor of histologic fibrosis (ROC area under the curve = 0.910). MaRIA alone was the best predictor of histologic inflammation with excellent performance in identifying active histologic inflammation (ROC area under the curve = 0.966). DISCUSSION: MRE-based scores for histologic fibrosis and inflammation may assist in the characterization of CD stenosis and enable development of fibrosis-targeted therapies and clinical treatment of stenotic patients.


Subject(s)
Crohn Disease , Constriction, Pathologic/diagnostic imaging , Crohn Disease/complications , Crohn Disease/diagnostic imaging , Fibrosis , Humans , Inflammation/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Prospective Studies
16.
Nat Med ; 28(4): 766-779, 2022 04.
Article in English | MEDLINE | ID: mdl-35190725

ABSTRACT

B cells, which are critical for intestinal homeostasis, remain understudied in ulcerative colitis (UC). In this study, we recruited three cohorts of patients with UC (primary cohort, n = 145; validation cohort 1, n = 664; and validation cohort 2, n = 143) to comprehensively define the landscape of B cells during UC-associated intestinal inflammation. Using single-cell RNA sequencing, single-cell IgH gene sequencing and protein-level validation, we mapped the compositional, transcriptional and clonotypic landscape of mucosal and circulating B cells. We found major perturbations within the mucosal B cell compartment, including an expansion of naive B cells and IgG+ plasma cells with curtailed diversity and maturation. Furthermore, we isolated an auto-reactive plasma cell clone targeting integrin αvß6 from inflamed UC intestines. We also identified a subset of intestinal CXCL13-expressing TFH-like T peripheral helper cells that were associated with the pathogenic B cell response. Finally, across all three cohorts, we confirmed that changes in intestinal humoral immunity are reflected in circulation by the expansion of gut-homing plasmablasts that correlates with disease activity and predicts disease complications. Our data demonstrate a highly dysregulated B cell response in UC and highlight a potential role of B cells in disease pathogenesis.


Subject(s)
Colitis, Ulcerative , Plasma Cells , B-Lymphocytes , Colitis, Ulcerative/genetics , Humans , Intestinal Mucosa/pathology , Lymphocyte Count , T-Lymphocytes, Helper-Inducer
17.
Cell Rep Med ; 2(8): 100381, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34467254

ABSTRACT

Anti-integrins are therapeutically effective for inflammatory bowel disease, yet the relative contribution of α4ß7 and αEß7 to gut lymphocyte trafficking is not fully elucidated. Here, we evaluate the effect of α4ß7 and αEß7 blockade using a combination of murine models of gut trafficking and longitudinal gene expression analysis in etrolizumab-treated patients with Crohn's disease (CD). Dual blockade of α4ß7 and αEß7 reduces CD8+ T cell accumulation in the gut to a greater extent than blockade of either integrin alone. Anti-αEß7 reduces epithelial:T cell interactions and promotes egress of activated T cells from the mucosa into lymphatics. Inflammatory gene expression is greater in human intestinal αEß7+ T cells. Etrolizumab-treated patients with CD display a treatment-specific reduction in inflammatory and cytotoxic intraepithelial lymphocytes (IEL) genes. Concurrent blockade of α4ß7 and αEß7 promotes reduction of cytotoxic IELs and inflammatory T cells in the gut mucosa through a stepwise inhibition of intestinal tissue entry and retention.


Subject(s)
Inflammatory Bowel Diseases/immunology , Integrins/metabolism , Lymphocytes/immunology , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Biopsy , CD8-Positive T-Lymphocytes , Cadherins/metabolism , Cell Communication , Cell Movement , Colon/pathology , Epitopes/immunology , Female , Gene Expression Regulation/drug effects , Inflammation/complications , Inflammation/pathology , Inflammatory Bowel Diseases/complications , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Lymph Nodes/pathology , Mice, Inbred C57BL , Mice, Transgenic , T-Lymphocytes, Cytotoxic/drug effects
18.
Curr Opin Immunol ; 19(3): 309-14, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17433872

ABSTRACT

The past year has seen significant advances in our understanding of the critical roles of negative immunoregulatory signals delivered by the programmed death 1 (PD-1)-PD-1 ligand (PD-L) pathway in regulating T-cell activation and tolerance. Emerging evidence indicates that PD-Ls play an essential role on dendritic cells (DCs), both directly during DC-T cell interactions and indirectly through signaling into the DC. Recent studies point to a novel role for PD-L1 in maintaining tissue tolerance. Finally, PD-1 has recently been shown to be highly expressed on exhausted T cells during chronic viral infection, and blockade of PD-1 or PD-L1 can revive exhausted T cells, enabling them to proliferate and produce effector cytokines.


Subject(s)
Antigens, CD/immunology , Apoptosis Regulatory Proteins/immunology , T-Lymphocytes/immunology , Animals , Antigens, CD/metabolism , Apoptosis Regulatory Proteins/metabolism , B7-H1 Antigen , Cell Communication/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Immune Tolerance , Lymphocyte Activation/immunology , Programmed Cell Death 1 Receptor , T-Lymphocytes/metabolism
19.
Circulation ; 116(18): 2062-71, 2007 Oct 30.
Article in English | MEDLINE | ID: mdl-17938288

ABSTRACT

BACKGROUND: PD-L1 and PD-L2 are ligands for the inhibitory receptor programmed death-1 (PD-1), which is an important regulator of immune responses. PD-L1 is induced on cardiac endothelial cells under inflammatory conditions, but little is known about its role in regulating immune injury in the heart. METHODS AND RESULTS: Cytotoxic T-lymphocyte-mediated myocarditis was induced in mice, and the influence of PD-L1 signaling was studied with PD-L1/L2-deficient mice and blocking antibodies. During cytotoxic T-lymphocyte-induced myocarditis, the upregulation of PD-L1 on cardiac endothelia was dependent on T-cell-derived interferon-gamma, and blocking of interferon-gamma signaling worsened disease. Genetic deletion of both PD-1 ligands [PD-L1/2(-/-)], as well as treatment with PD-L1 blocking antibody, transformed transient myocarditis to lethal disease, in association with widespread polymorphonuclear leukocyte-rich microabscesses but without change in cytotoxic T-lymphocyte recruitment. PD-L1/2(-/-) mice reconstituted with bone marrow from wild-type mice remained susceptible to severe disease, which demonstrates that PD-L1 on non-bone marrow-derived cells confers the protective effect. Finally, depletion of polymorphonuclear leukocytes reversed the enhanced susceptibility to lethal myocarditis attributable to PD-L1 deficiency. CONCLUSIONS: Myocardial PD-L1, mainly localized on endothelium, is critical for control of immune-mediated cardiac injury and polymorphonuclear leukocyte inflammation.


Subject(s)
B7-1 Antigen/physiology , CD8-Positive T-Lymphocytes/metabolism , Endothelial Cells/metabolism , Membrane Glycoproteins/physiology , Myocarditis/metabolism , Peptides/physiology , Animals , B7-1 Antigen/biosynthesis , B7-1 Antigen/genetics , B7-H1 Antigen , CD8-Positive T-Lymphocytes/pathology , Endothelial Cells/pathology , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Inflammation Mediators/physiology , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocarditis/immunology , Myocarditis/pathology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Peptides/genetics , Signal Transduction/immunology
20.
J Crohns Colitis ; 12(suppl_2): S653-S668, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-29767705

ABSTRACT

Integrins are cell surface receptors with bidirectional signalling capabilities that can bind to adhesion molecules in order to mediate homing of leukocytes to peripheral tissues. Gut-selective leukocyte homing is facilitated by interactions between α4ß7 and its ligand, mucosal addressin cellular adhesion molecule-1 [MAdCAM-1], while retention of lymphocytes in mucosal tissues is mediated by αEß7 binding to its ligand E-cadherin. Therapies targeting gut-selective trafficking have shown efficacy in inflammatory bowel disease [IBD], confirming the importance of leukocyte trafficking in disease pathobiology. This review will provide an overview of integrin structure, function and signalling, and highlight the role that these molecules play in leukocyte homing and retention. Anti-integrin therapeutics, including gut-selective antibodies against the ß7 integrin subunit [etrolizumab] and the α4ß7 integrin heterodimer [vedolizumab and abrilumab], and the non-gut selective anti-α4 integrin [natalizumab], will be discussed, as well as novel targeting approaches using small molecules.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Gastrointestinal Agents/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Integrins/metabolism , Lymphocytes/metabolism , Natalizumab/therapeutic use , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/adverse effects , Cell Adhesion Molecules , Cell Movement/drug effects , Gastrointestinal Tract/metabolism , Humans , Immunoglobulins/metabolism , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Integrins/antagonists & inhibitors , Lymphocytes/immunology , Molecular Targeted Therapy , Mucoproteins/antagonists & inhibitors , Mucoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL