Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38941083

ABSTRACT

Insect crop pests threaten global food security. This threat is amplified through the spread of nonnative species and through adaptation of native pests to control measures. Adaptations such as pesticide resistance can result from selection on variation within a population, or through gene flow from another population. We investigate these processes in an economically important noctuid crop pest, Helicoverpa zea, which has evolved resistance to a wide range of pesticides. Its sister species Helicoverpa armigera, first detected as an invasive species in Brazil in 2013, introduced the pyrethroid-resistance gene CYP337B3 to South American H. zea via adaptive introgression. To understand whether this could contribute to pesticide resistance in North America, we sequenced 237 H. zea genomes across 10 sample sites. We report H. armigera introgression into the North American H. zea population. Two individuals sampled in Texas in 2019 carry H. armigera haplotypes in a 4 Mbp region containing CYP337B3. Next, we identify signatures of selection in the panmictic population of nonadmixed H. zea, identifying a selective sweep at a second cytochrome P450 gene: CYP333B3. We estimate that its derived allele conferred a ∼5% fitness advantage and show that this estimate explains independently observed rare nonsynonymous CYP333B3 mutations approaching fixation over a ∼20-year period. We also detect putative signatures of selection at a kinesin gene associated with Bt resistance. Overall, we document two mechanisms of rapid adaptation: the introduction of fitness-enhancing alleles through interspecific introgression, and selection on intraspecific variation.


Subject(s)
Genetic Introgression , Insecticide Resistance , Moths , Animals , Moths/genetics , Insecticide Resistance/genetics , Cytochrome P-450 Enzyme System/genetics , North America , Adaptation, Biological/genetics , Adaptation, Physiological/genetics , Selection, Genetic , Introduced Species
2.
Appl Environ Microbiol ; 89(12): e0164423, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38014960

ABSTRACT

IMPORTANCE: Helicoverpa zea is a major crop pest in the United States that is managed with transgenic corn and cotton that produce insecticidal proteins from the bacterium, Bacillus thuringiensis (Bt). However, H. zea has evolved widespread resistance to the Cry proteins produced in Bt corn and cotton, leaving Vip3Aa as the only plant-incorporated protectant in Bt crops that consistently provides excellent control of H. zea. The benefits provided by Bt crops will be substantially reduced if widespread Vip3Aa resistance develops in H. zea field populations. Therefore, it is important to identify resistance alleles and mechanisms that contribute to Vip3Aa resistance to ensure that informed resistance management strategies are implemented. This study is the first report of reduced binding of Vip3Aa to midgut receptors associated with resistance.


Subject(s)
Bacillus thuringiensis , Moths , Animals , United States , Zea mays/metabolism , Endotoxins/metabolism , Insecticide Resistance/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plants, Genetically Modified/metabolism , Hemolysin Proteins/genetics , Moths/genetics , Bacillus thuringiensis/genetics , Larva/metabolism
3.
Appl Environ Microbiol ; 85(16)2019 08 15.
Article in English | MEDLINE | ID: mdl-31175187

ABSTRACT

Two new modified Bacillus thuringiensis (Bt) proteins, Cry1Da_7 and Cry1B.868, with activity against fall armyworms (FAW), Spodoptera frugiperda (J.E. Smith), were evaluated for their potential to bind new insect receptors compared to proteins currently deployed as plant-incorporated protectants (PIPs) in row crops. Results from resistant insect bioassays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that receptor utilizations of the newly modified Cry1Da_7 and Cry1B.868 proteins are distinct from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Accordingly, these two proteins target different insect proteins in FAW midgut cells and when pyramided together should provide durability in the field against this economically important pest.IMPORTANCE There is increased concern with the development of resistance to insecticidal proteins currently expressed in crop plants, especially against high-resistance-risk pests such as fall armyworm (FAW), Spodoptera frugiperda, a maize pest that already has developed resistance to Bacillus thuringiensis (Bt) proteins such as Cry1F. Lepidopteran-specific proteins that bind new insect receptors will be critical in managing current Cry1F-resistant FAW and delaying future resistance development. Results from resistant insect assays, disabled insecticidal protein (DIP) bioassays, and cell-based assays using insect cells expressing individual receptors demonstrate that target receptors of the Cry1Da_7 and Cry1B.868 proteins are different from each other and from those of commercially available Bt proteins such as Cry1F, Cry1A.105, Cry2Ab, and Vip3A. Therefore, pyramiding these two new proteins in maize will provide durable control of this economically important pest in production agriculture.


Subject(s)
Bacterial Proteins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insect Proteins/metabolism , Insecticide Resistance , Spodoptera/drug effects , Spodoptera/metabolism , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Endotoxins/genetics , Endotoxins/pharmacology , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Insect Proteins/genetics , Insecticides/metabolism , Insecticides/pharmacology , Plant Diseases/parasitology , Plants, Genetically Modified/parasitology , Protein Binding , Spodoptera/genetics , Zea mays/parasitology
4.
Plants (Basel) ; 13(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38498539

ABSTRACT

During 2021 and 2022, eight field-collected and five laboratory Helicoverpa zea strains with varying susceptibility to different Bt proteins were evaluated for their responses against HearNPV using diet-overlay bioassays. The five laboratory strains included SS (susceptible to all Bt proteins), CRY-RR (resistant to Cry1 and Cry2), VIP-RR-70 (resistant to Vip3Aa), VIP-RR-15 (resistant to Vip3Aa), and TRE-RR (resistant to Cry1, Cry2, and Vip3Aa). Our findings showed that the susceptibility of TRE-RR, VIP-RR-70, and VIP-RR-15 strains to HearNPV was similar to that of the SS strain. However, the field and Cry-RR strains were more resistant to HearNPV compared to the SS strain. Because most feral H. zea strains in the southern U.S. have developed practical resistance to Cry Bt proteins but remain susceptible to Vip3Aa, the results suggest that the reduced susceptibility to HearNPV in H. zea may be associated with the resistance to Cry Bt proteins but not with the resistance to Vip3Aa. Correlation analysis confirmed that there was a significant positive relationship between Cry resistance and HearNPV resistance, but not between the Vip3Aa resistance and HearNPV resistance in H. zea. Our findings provide valuable insights into the relationship between susceptibility to HearNPV and resistance to Bt proteins in H. zea.

5.
Insects ; 15(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38786872

ABSTRACT

Prior to the recent implementation of the Mpp51Aa2 pesticidal protein (ThryvOn), transgenic cotton cultivars have historically offered no control of the cotton fleahopper (Pseudatomocelis seriatus (Reuter)). To evaluate the feeding behavior of cotton fleahoppers on ThryvOn cotton, electropenetrography (EPG) using a Giga-8 DC instrument was used to monitor the probing activity of fourth- and fifth-instar cotton fleahopper nymphs on both ThryvOn and non-ThryvOn cotton squares. Nymphs were individually placed on an excised cotton square for 8 h of EPG recording, after which resulting waveforms were classified as non-probing, cell rupturing, or ingestion. Although there were significantly more cell rupturing events per insect on ThryvOn (mean ± SEM, 14.8 ± 1.7) than on non-ThryvOn squares (mean ± SEM, 10.3 ± 1.6), there was no difference attributable to ThryvOn in the average number of ingestion events per insect. However, the average duration of ingestion events was significantly shorter on squares with ThryvOn (mean ± SEM, 509 ± 148 s) than on squares without (mean ± SEM, 914 ± 135 s). This suggests that cotton fleahoppers continued to probe despite their inability to sustain ingestion. These results provide conclusive evidence that the Mpp51Aa2 pesticidal protein affects the feeding behavior of cotton fleahopper nymphs.

6.
Pest Manag Sci ; 80(6): 2796-2803, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38327120

ABSTRACT

BACKGROUND: Practical resistance of Helicoverpa zea to Cry proteins has become widespread in the US, making Vip3Aa the only effective Bacillus thuringiensis (Bt) protein for controlling this pest. Understanding the genetic basis of Vip3Aa resistance in H. zea is essential in sustaining the long-term efficacy of Vip3Aa. The objectives of this study were to characterize the inheritance of Vip3Aa resistance in four distinct field-derived H. zea strains (M1-RR, AC4-RR, R2-RR and R15-RR), and to test for shared genetic basis among these strains and a previously characterized Texas resistant strain (LT#70-RR). RESULTS: Maternal effects and sex linkage were absent, and the effective dominance level (DML) was 0.0 across Vip3Aa39 concentrations ranging from 1.0 to 31.6 µg cm-2, in all H. zea resistant strains. Mendelian monogenic model tests indicated that Vip3Aa resistance in each of the four strains was controlled by a single gene. However, interstrain complementation tests indicated that three distinct genetic loci are involved in Vip3Aa resistance in the five resistant H. zea strains: one shared by M1-RR and LT#70-RR; another shared by R2-RR and R15-RR; and a distinct one for AC4-RR. CONCLUSION: Results of this study indicate that Vip3Aa resistance in all H. zea strains was controlled by a single, recessive and autosomal gene. However, there were three distinct genetic loci associated with Vip3Aa resistance in the five resistant H. zea strains. The information generated from this study is valuable for exploring mechanisms of Vip3Aa resistance, monitoring the evolution of Vip3Aa resistance, and devising effective strategies for managing Vip3Aa resistance in H. zea. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Bacterial Proteins , Drug Resistance , Moths , Moths/drug effects , Moths/genetics , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Drug Resistance/genetics , Pest Control/methods , Lethal Dose 50 , Genetic Complementation Test , Genes, Recessive/genetics , Animals
7.
Insects ; 14(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36835730

ABSTRACT

Helicoverpa zea is a major target pest of Bt crops expressing Cry and/or Vip3Aa proteins in the U.S.A. Widespread practical resistance of H. zea to the Cry1 and Cry2 proteins makes Vip3Aa the only effective Bt protein against this pest. Understanding the frequency of resistance alleles against Vip3Aa in field populations of H. zea is crucial for resistance management and the sustainability of Vip3Aa technology. Using a modified F2 screen method by crossing susceptible laboratory female moth with feral male moth of H. zea, we successfully screened a total of 24,576 neonates from 192 F2 families of H. zea collected from Arkansas, Louisiana, Mississippi, and Tennessee during 2019-2020. We found five F2 families containing ≥3rd instar survivors on the diagnostic concentration of 3.0 µg/cm2 Vip3Aa39. Dose-response bioassays confirmed the high levels of Vip3Aa resistance in these F2 families, with an estimated resistance ratio of >909.1-fold relative to the susceptible strain. The estimated resistance allele frequency against Vip3Aa in H. zea for these four southern states is 0.0155 with a 95% CI of 0.0057-0.0297. These data should provide critical information for understanding the risks of Vip3Aa resistance in H. zea and help design appropriate resistance management strategies for the sustainability of the Vip3Aa technology.

8.
J Econ Entomol ; 116(2): 289-296, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36610074

ABSTRACT

Evaluating the frequency of resistance alleles is important for resistance management and sustainable use of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis. Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) is a major crop pest in the United States that has evolved practical resistance to the crystalline (Cry) proteins in Bt corn and cotton. The standard F2 screen for estimating resistance allele frequency does not work well for H. zea because successful single-pair matings are rare. In this study, we developed and implemented a modified F2 screen for H. zea that generates F1 progeny by crossing three laboratory susceptible female moths with one feral male moth instead of single-pair crosses. During 2019-2020, we used this modified method to establish 192 F2 families from 623 matings between susceptible females and feral males from Arkansas, Louisiana, Mississippi, and Tennessee. From each F2 family, we screened 128 neonates against discriminating concentrations of Cry1Ac and Cry2Ab in diet overlay bioassays. Based on these discriminating concentration bioassays, families were considered positive for resistance if at least five larvae survived to second instar, including at least one to third instar. The percentage of positive families was 92.7% for Cry1Ac and 38.5% for Cry2Ab, which yields an estimated resistance allele frequency (with 95% confidence interval) of 0.722 (0.688-0.764) for Cry1Ac and 0.217 (0.179-0.261) for Cry2Ab. The modified F2 screen developed and implemented here may be useful for future resistance monitoring studies of H. zea and other pests.


Subject(s)
Bacillus thuringiensis , Moths , Female , Male , Animals , Zea mays , Endotoxins , Bacillus thuringiensis Toxins , Insecticide Resistance , Bacterial Proteins , Hemolysin Proteins , Moths/genetics , Larva , Gene Frequency , Plants, Genetically Modified
9.
Pest Manag Sci ; 79(12): 5173-5179, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37575031

ABSTRACT

BACKGROUND: Pyramiding Bt proteins is a key strategy to delay insect resistance development. However, the durability of pyramided Bt crops for controlling insect pests is threatened by cross-resistance among Bt proteins, which can ultimately contribute to resistance development. The corn earworm, Helicoverpa zea, is a major agricultural pest of pyramided Bt crops. Previous studies have examined cross-resistance and redundant killing of Cry resistance in H. zea, but such information is lacking for Vip3Aa resistance in this pest. Here, we evaluated cross-resistance and redundant killing of Vip3Aa-resistant H. zea to purified Bt proteins, as well as Bt corn and Bt cotton. RESULTS: Diet bioassays demonstrated high susceptibility of Vip3Aa-resistant H. zea to Cry1Ac, Cry1A.105, and Cry2Ab2 purified proteins. No Vip3Aa-susceptible, -heterozygous, or -resistant H. zea could survive on pyramided Bt corn containing Cry1 and/or Cry2 proteins. Complete redundant killing was observed in pyramided Bt corn containing Cry1 and/or Cry2 proteins against Vip3Aa resistance in H. zea. Vip3Aa-susceptible, -heterozygous, and -resistant H. zea exhibited survival rates ranging from 0.0% to 22.5% on pyramided Bt cotton with Cry1 and/or Cry2 proteins. Incomplete to complete redundant killing was observed for Vip3Aa-resistant H. zea on pyramided Bt cotton containing Cry1 and/or Cry2 proteins. CONCLUSION: Our findings indicate that Vip3Aa-resistant H. zea does not exhibit positive cross-resistance to Cry1 or Cry2 proteins. In addition, most pyramided Bt crops showed complete or nearly complete redundant killing of Vip3Aa-resistant H. zea. These results indicate that a pyramiding strategy would often be effective for managing Vip3Aa resistance in regions of the United States where H. zea has not evolved resistance to Cry1 and Cry2 toxins. © 2023 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Moths , Animals , United States , Zea mays/genetics , Zea mays/metabolism , Endotoxins/genetics , Endotoxins/pharmacology , Endotoxins/metabolism , Insecticide Resistance/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Transcription Factors/metabolism , Bacillus thuringiensis/genetics
10.
Toxins (Basel) ; 15(11)2023 11 05.
Article in English | MEDLINE | ID: mdl-37999507

ABSTRACT

The cotton fleahopper (Pseudatomoscelis seriatus Reuter) is considered a highly economically damaging pest of cotton (Gossypium hirsutum L.) in Texas and Oklahoma. Current control methods rely heavily on the use of foliar-applied chemical insecticides, but considering the cost of insecticides and the critical timeliness of applications, chemical control methods are often not optimized to reduce potential yield losses from this pest. The Bacillus thuringiensis (Bt) Mpp51Aa2 (formerly Cry51Aa2.834_16) protein has proven effective against thrips and plant bugs with piercing and sucking feeding behaviors, but the impact of this toxin on cotton fleahoppers has not been investigated. To evaluate the Mpp51Aa2 trait effectiveness towards the cotton fleahopper, field trials were conducted in 2019, 2020, and 2021, comparing a cotton cultivar containing the Mpp51Aa2 trait to a non-traited isoline cultivar under insecticide-treated and untreated conditions. Populations of cotton fleahopper nymphs and adults were estimated weekly by visually inspecting cotton terminals. Square retention was also assessed during the first week of bloom to provide some insight on how the Bt trait may influence yield. While cotton fleahopper population differences between the traited and non-traited plants were not consistently noted during the pre-bloom squaring period, there was a consistent increase in square retention in cotton expressing Mpp51Aa2 relative to non-traited cotton. Additionally, cotton expressing Mpp51Aa2 offered similar square protection relative to non-traited cotton treated with insecticides for the cotton fleahopper. These findings indicate that the Mpp51Aa2 protein should provide benefits of delayed nymphal growth, population suppression, and increased square retention.


Subject(s)
Bacillus thuringiensis , Heteroptera , Insecticides , Animals , Gossypium/genetics , Insecticides/pharmacology , Texas , Feeding Behavior , Plants, Genetically Modified/genetics , Endotoxins , Bacterial Proteins/genetics , Hemolysin Proteins
11.
J Econ Entomol ; 115(6): 1752-1760, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36515105

ABSTRACT

The fall armyworm, Spodoptera frugiperda, is an economically important pest of corn, cotton, and soybean, and a major target of transgenic crops expressing Bacillus thuringiensis (Bt) proteins. In recent years, this insect has invaded most countries in Africa, Southeastern Asia, and Oceania, posing a great threat to food security. Successful use of Bt crops in the U.S. indicates that Bt technology can be an effective tool for management of S. frugiperda in other countries. Evolution of insect resistance is the primary threat to the long-term efficacy of Bt technology. There are many factors that may affect the rate of evolution of insect resistance to Bt crops, which include initial resistance allele frequency, the dose of Bt protein in Bt crops, cross-resistance, complete/incomplete resistance, and fitness costs associated with resistance. Currently, the high dose/refuge and gene-pyramiding approaches are the two main IRM strategies used in the U.S. to combat evolution of insect resistance. In this paper, we review research on resistance of S. frugiperda to Cry1, Cry2, and Vip3Aa proteins. Specifically, we discuss the resistance allele frequencies of S. frugiperda to these three proteins in the field, the genetic basis of resistance, the patterns of cross-resistance, and the fitness costs associated with resistance. Experience and knowledge gained from these studies provide valuable information for the successful use of Bt crop technology for control of S. frugiperda worldwide.


Subject(s)
Bacillus thuringiensis , Animals , Bacillus thuringiensis/genetics , Spodoptera/genetics , Zea mays/genetics , Zea mays/metabolism , Plants, Genetically Modified/genetics , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Bacterial Proteins/metabolism , Hemolysin Proteins/pharmacology , Hemolysin Proteins/metabolism , Gossypium/genetics , Crops, Agricultural , Americas , Insecticide Resistance/genetics , Endotoxins/pharmacology
12.
Pest Manag Sci ; 78(8): 3260-3265, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35474413

ABSTRACT

BACKGROUND: Seed mixture strategy can guarantee the compliance of planting non-Bt crops to host the susceptible insects for resistance management. However, pollen movement between Bt and non-Bt corn in the mixed plantings could reduce the efficacy of this strategy for ear-feeding insects. Few studies have evaluated the effects of cross-pollination among non-Bt and pyramided Bt corn in seed mixtures on the resistance development of insects possessing multiple resistances. Here, we provided the first study to investigate whether cross-pollination in mixed plantings of pyramided Bt corn producing Cry1A.105 and Cry2Ab2 would increase the dominance of resistance of dual-gene resistant populations of Helicoverpa zea, a target of pyramided Bt corn and cotton in the USA. RESULTS: We compared the survival and development of susceptible, dual-gene resistant (resistance to both Cry1 and Cry2 proteins) and heterozygous genotypes of H. zea in the laboratory on non-Bt and pyramided Bt corn ears collected from mixed plantings and structured plantings in the field. We found higher fitness for F1 heterozygous insects than for the susceptible insects of H. zea on both pyramided Bt corn and non-Bt corn in the mixed plantings. CONCLUSION: These results suggest that cross-pollination in mixed plantings will significantly increase the dominance of resistance by supporting survival of heterozygous insects for dual-gene resistant populations of H. zea, and therefore accelerate evolution of resistance to pyramided Bt crops. © 2022 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacterial Proteins/pharmacology , Crops, Agricultural/genetics , Endotoxins/pharmacology , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Insecticide Resistance/genetics , Larva/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Pollination , Seeds/metabolism , Zea mays/genetics , Zea mays/metabolism
13.
Pest Manag Sci ; 78(1): 95-103, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34448529

ABSTRACT

BACKGROUND: Diet-overlay bioassays suggest that Helicoverpa zea (Lepidoptera: Noctuidae) field populations have developed resistance to some of the Bt insecticidal proteins that are constituents of the pyramids expressed in the second and third generation Bt cotton technologies. Unfortunately, these bioassays are not always a reliable indicator for how a seemingly resistant population will perform in an actual cotton field, and thus, leaf tissue bioassays have been suggested as a method to better assess field performance. However, bollworm larvae typically prefer to feed on floral tissue rather than leaf tissue, and an alternative cotton structure type may be more ideal for use in plant tissue-based bioassays. A series of diet-overlay bioassays using Bt proteins and Bt cotton plant tissue were conducted with laboratory susceptible (Bz-SS) and resistant (Cry-RR, resistant to Cry1Ac and Cry2Ab) H. zea strains to determine if plant tissue overlays could detect resistance and which cotton plant structure type would be most ideal for use in bioassays. RESULTS: Results suggest that diet overlays using lyophilized plant tissue were able to detect resistance. Lyophilized tissue from white flowers was most ideal for use in bioassays, whereas tissue from non-Bt bolls and leaves affected larval health and behavior, confounding assay results. CONCLUSION: Overlays using white flower tissue could potentially be used to supplement Bt protein overlays and provide an improved assessment of larval performance on Bt cotton technologies. © 2021 Society of Chemical Industry.


Subject(s)
Hemolysin Proteins , Moths , Animals , Bacterial Proteins/genetics , Endotoxins/genetics , Endotoxins/pharmacology , Gossypium/genetics , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Insecticide Resistance/genetics , Larva , Moths/genetics , Plants, Genetically Modified/genetics , Zea mays/genetics
14.
Pest Manag Sci ; 78(10): 4333-4339, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35750998

ABSTRACT

BACKGROUND: Pyramided Bacillus thuringiensis (Bt) crops producing multiple Bt proteins with different modes of action are widely planted in the United States. Helicoverpa zea is a major target pest of pyramided Bt crops and has evolved practical resistance to both Cry1 and Cry2 proteins in some regions of U.S. However, little information is available regarding redundant killing and the dominance of resistance for insects possessing multiple resistance on pyramided Bt crops. In this study, we evaluated redundant killing and the dominance of resistance for H. zea strains resistant to Cry1 or Cry1 + Cry2 on pyramided Bt corn and cotton. RESULTS: We found that the Cry1-resistant H. zea was incompletely dominant on Cry1Ac + Cry1F cotton. Pyramided crops producing Cry2 and/or Vip3Aa proteins showed a complete redundant killing against the Cry1-resistant H. zea. The Cry1 + Cry2-resistant H. zea displayed incompletely recessive to completely dominant resistance on pyramided Bt crops containing Cry1 and/or Cry2 proteins. The redundant killing was complete for the Cry1 + Cry2-resistant H. zea on pyramided Bt crops producing Vip3Aa protein. CONCLUSION: The dominant resistance of Cry1 and Cry2 in H. zea on pyramided Bt crops deviates from the assumption of functionally recessive resistance underlying the high-dose refuge strategy. However, the assumptions of complete redundant killing are achieved for both Cry1- and Cry1 + Cry2-resistant H. zea on pyramided Bt crops. These results suggest that the pyramided strategy could be valuable for increasing the durability of Bt technology for managing H. zea, a pest with inherently low susceptibility against Cry proteins. © 2022 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Endotoxins/genetics , Endotoxins/metabolism , Endotoxins/pharmacology , Gossypium/genetics , Gossypium/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Insecticide Resistance/genetics , Larva , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Zea mays/genetics , Zea mays/metabolism
15.
Insect Sci ; 29(2): 487-495, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34258865

ABSTRACT

Helicoverpa zea is a major target pest of Bt corn and Bt cotton. Field-evolved resistance of H. zea to Cry1 and Cry2 proteins has been widely reported in the United States. Understanding the frequency of resistance alleles in a target insect is critical for Bt resistance management. Despite multiple cases of practical resistance to Cry proteins having been documented in H. zea, there are no data on the current status of alleles conferring resistance to Cry1Ac and Cry2Ab2 in field populations of this pest. During 2018-2019, a total of 106 F2 families for Cry1Ac and 120 F2 families for Cry2Ab2 were established using mass mating and light trap strategy. We screened 13,568 and 15,360 neonates using a discriminatory dose of Cry1Ac and Cry2Ab2, respectively. The results showed that 93.4% and 35.0% of the F2 families could survive on the discriminatory dose of Cry1Ac and Cry2Ab2, respectively. The estimated resistance allele frequency for Cry1Ac in H. zea ranged from 0.4150 to 0.4975 and for Cry2Ab2 ranged from 0.1097 and 0.1228. These data indicate that the frequency of alleles conferring resistance to Cry1 and Cry2 proteins in H. zea in Texas are high. In addition, our data suggest the resistance to Cry1Ac and Cry2Ab2 in the screened families of H. zea varies from recessive to dominant. The information in this study provides precise estimates of Cry resistance allele frequencies in H. zea and increases our understanding of the risks to the sustainability of Bt crops.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/metabolism , Bacillus thuringiensis Toxins , Bacterial Proteins/metabolism , Endotoxins/metabolism , Endotoxins/pharmacology , Hemolysin Proteins/genetics , Insecticide Resistance/genetics , Moths/genetics , Moths/metabolism , Plants, Genetically Modified/metabolism , Texas , United States , Zea mays/genetics
16.
Pest Manag Sci ; 78(12): 5234-5242, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36053801

ABSTRACT

BACKGROUND: Crops genetically engineered to make insect-killing proteins from Bacillus thuringiensis (Bt) have revolutionized management of some pests. However, the benefits of such transgenic crops are reduced when pests evolve resistance to Bt toxins. We evaluated resistance to Bt toxins and Bt cotton plants using laboratory bioassays and complementary field trials focusing on Helicoverpa zea, one of the most economically important pests of cotton and other crops in the United States. RESULTS: The data from 235 laboratory bioassays demonstrate resistance to Cry1Ac, Cry1Fa, and Cry2Ab occurred in most of the 95 strains of H. zea derived from Arkansas, Louisiana, Mississippi, Tennessee, and Texas during 2016 to 2021. Complementary field data show efficacy decreased for Bt cotton producing Cry1Ac + Cry1Fa or Cry1Ac + Cry2Ab, but not Cry1Ac + Cry1Fa + Vip3Aa. Moreover, analysis of data paired by field site and year shows higher survival in bioassays was generally associated with lower efficacy of Bt cotton. CONCLUSIONS: The results confirm and extend previous evidence showing widespread practical resistance of H. zea in the United States to the Cry toxins produced by Bt cotton and corn, but not to Vip3Aa. Despite deployment in combination with Cry toxins in Bt crops, Vip3Aa effectively acts as a single toxin against H. zea larvae that are highly resistant to Cry toxins. Furthermore, Vip3Aa adoption is increasing and previous work provided an early warning of field-evolved resistance. Thus, rigorous resistance management measures are needed to preserve the efficacy of Vip3Aa against this highly adaptable pest. © 2022 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Moths , Animals , United States , Bacillus thuringiensis Toxins , Bacillus thuringiensis/genetics , Zea mays/metabolism , Gossypium/metabolism , Insecticide Resistance , Bacterial Proteins/pharmacology , Hemolysin Proteins/pharmacology , Endotoxins/pharmacology , Crops, Agricultural/metabolism , Plants, Genetically Modified/metabolism
17.
J Econ Entomol ; 115(5): 1693-1702, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36099406

ABSTRACT

Foliar-applied insecticide treatments may be necessary to manage thrips in cotton (Gossypium hirsutum L.) under severe infestations or when at-planting insecticide seed treatments do not provide satisfactory protection. The most common foliar-applied insecticide is acephate. Field observations in Tennessee suggest that the performance of acephate has declined. Thus, the first objective was to perform leaf-dip bioassays to assess if tobacco thrips, Frankliniella fusca (Hinds) (Thysanoptera: Thripidae), in cotton production regions have evolved resistance to foliar-applied insecticides. A second objective was to assess the performance of commonly applied foliar insecticides for managing thrips in standardized field trials in Arkansas, Tennessee, Mississippi, and Texas. For both objectives, several insecticides were evaluated including acephate, dicrotophos, dimethoate, lambda-cyhalothrin, imidacloprid, and spinetoram. Field trials and bioassays were completed from 2018 to 2021. Dose-response bioassays with acephate were performed on tobacco thrips field populations and a susceptible laboratory population. Bioassay results suggest that tobacco thrips have developed resistance to acephate and other organophosphate insecticides; however, this resistance seems to be most severe in Arkansas, Tennessee, and the Delta region of Mississippi. Resistance to other classes of insecticides were perhaps even more evident in these bioassays. The performance of these insecticides in field trials was variable, with tobacco thrips only showing consistent signs of resistance to lambda-cyhalothrin. However, it is evident that many populations of tobacco thrips are resistant to multiple classes of insecticides. Further research is needed to determine heritability and resistance mechanism(s).


Subject(s)
Insecticides , Thysanoptera , Animals , Biological Assay , Dimethoate , Gossypium , Insecticides/pharmacology , Nitriles , Organothiophosphorus Compounds , Phosphoramides , Pyrethrins , Nicotiana , United States
18.
Pest Manag Sci ; 77(4): 1963-1970, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33314557

ABSTRACT

BACKGROUND: Pyramided Bacillus thuringiensis (Bt) crops could delay insect resistance development by expressing multiple distinct Bt proteins to manage the same insect pest. The efficacy of pyramiding strategy for resistance management could be jeopardized by positive cross-resistance, which is defined as insects showing resistance to one Bt protein also exhibiting resistance to other Bt proteins. The fall armyworm, Spodoptera frugiperda, is a destructive agricultural pest and target of Vip3Aa. In this study, we evaluate the cross-resistance of Vip3Aa resistance in S. frugiperda to Bt cotton and corn plants, as well as purified Bt proteins. RESULTS: Diet bioassay showed that Vip3Aa-resistant (RR), -heterozygous (RS), and -susceptible (SS) insects of S. frugiperda performed similarly against Cry2Ab2 purified protein. The data also indicated that genotypes RR and RS were more susceptible to Cry1F and Cry2Ae purified proteins relative to SS. The diet bioassays suggested that resistance to Vip3Aa does not confer any positive cross-resistance to Cry1F, Cry2Ae or Cry2Ab2 in S. frugiperda. The plant bioassay indicated that the S. frugiperda resistance to Vip3Aa conferred no cross-resistance to corn and no cross-crop resistance to cotton plants expressing Cry1 and/or Cry2 proteins. CONCLUSION: These findings indicate that a lack of positive cross-resistance to Cry1 and Cry2 proteins favors pyramiding strategy for managing S. frugiperda resistance to Vip3Aa protein. © 2020 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Bacterial Proteins , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Endotoxins/pharmacology , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Insecticide Resistance/genetics , Larva/genetics , Plants, Genetically Modified/genetics , Spodoptera/genetics , Zea mays/genetics
19.
Toxins (Basel) ; 13(9)2021 09 02.
Article in English | MEDLINE | ID: mdl-34564622

ABSTRACT

Evolution of resistance by pests can reduce the benefits of crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt). Because of the widespread resistance of Helicoverpa zea to crystalline (Cry) Bt toxins in the United States, the vegetative insecticidal protein Vip3Aa is the only Bt toxin produced by Bt corn and cotton that remains effective against some populations of this polyphagous lepidopteran pest. Here we evaluated H. zea resistance to Vip3Aa using diet bioassays to test 42,218 larvae from three lab strains and 71 strains derived from the field during 2016 to 2020 in Arkansas, Louisiana, Mississippi, Tennessee, and Texas. Relative to the least susceptible of the three lab strains tested (BZ), susceptibility to Vip3Aa of the field-derived strains decreased significantly from 2016 to 2020. Relative to another lab strain (TM), 7 of 16 strains derived from the field in 2019 were significantly resistant to Vip3Aa, with up to 13-fold resistance. Susceptibility to Vip3Aa was significantly lower for strains derived from Vip3Aa plants than non-Vip3Aa plants, providing direct evidence of resistance evolving in response to selection by Vip3Aa plants in the field. Together with previously reported data, the results here convey an early warning of field-evolved resistance to Vip3Aa in H. zea that supports calls for urgent action to preserve the efficacy of this toxin.


Subject(s)
Bacillus thuringiensis Toxins , Bacterial Proteins , Insect Control , Insecticide Resistance , Moths , Pest Control, Biological , Animals , Larva , Moths/growth & development , Plants, Genetically Modified/chemistry
20.
Pest Manag Sci ; 77(3): 1530-1535, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33201547

ABSTRACT

BACKGROUND: Helicoverpa zea is a destructive pest and target of maize and cotton expressing Cry and Vip3Aa proteins in North America. The efficacy of Cry proteins against H. zea in the USA has been largely compromised by resistance. A rapid shift towards planting Bt cotton and maize producing Vip3Aa will accelerate evolution of resistance to Vip3Aa in H. zea. Research on the genetic basis of Vip3Aa resistance in H. zea is urgently needed, and can provide fundamental information for managing resistance in this pest. Here, we characterize the inheritance of Vip3Aa resistance in H. zea. RESULTS: Susceptibility of a Vip3Aa-susceptible strain (SS), a resistant strain (RR), and progeny from different crosses against Vip3Aa39 was determined. RR was established from an F2 screening of a population from Texas sampled in 2019. RR had a resistance ratio of 45194.1-fold against Vip3Aa39 relative to SS. Maternal effects and sex linkage were absent in RR. The dominance D value, calculated based on median lethal concentration (LC50 ) values, was -1.0 and the effective dominance (DML ), calculated based on a given Vip3Aa39 concentration, was ≤0.0 at concentrations of 0.1-31.6 µg cm-2 . The test using a monogenic mode of inheritance showed that resistance to Vip3Aa in H. zea was largely due to a single gene. CONCLUSION: Results of this study indicate that Vip3Aa resistance in H. zea is monogenic, autosomal, and recessive. This information is valuable for studying the mechanism of Vip3Aa resistance, monitoring of resistance development, and designing appropriate strategies for preventive management of Vip3Aa resistance. © 2020 Society of Chemical Industry.


Subject(s)
Bacillus thuringiensis , Moths , Animals , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Endotoxins , Hemolysin Proteins/genetics , Insecticide Resistance/genetics , Larva/genetics , Moths/genetics , Plants, Genetically Modified , Texas , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL