Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Cancer ; 132(11): 2510-9, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23136038

ABSTRACT

Continuous human cell lines have been used extensively as models for biomedical research. In working with these cell lines, researchers are often unaware of the risk of cross-contamination and other causes of misidentification. To reduce this risk, there is a pressing need to authenticate cell lines, comparing the sample handled in the laboratory to a previously tested sample. The American Type Culture Collection Standards Development Organization Workgroup ASN-0002 has developed a Standard for human cell line authentication, recommending short tandem repeat (STR) profiling for authentication of human cell lines. However, there are known limitations to the technique when applied to cultured samples, including possible genetic drift with passage. In our study, a dataset of 2,279 STR profiles from four cell banks was used to assess the effectiveness of the match criteria recommended within the Standard. Of these 2,279 STR profiles, 1,157 were grouped into sets of related cell lines-duplicate holdings, legitimately related samples or misidentified cell lines. Eight core STR loci plus amelogenin were used to unequivocally authenticate 98% of these related sets. Two simple match algorithms each clearly discriminated between related and unrelated samples, with separation between related samples at ≥80% match and unrelated samples at <50% match. A small degree of overlap was noted at 50-79% match, mostly from cell lines known to display variable STR profiles. These match criteria are recommended as a simple and effective way to interpret results from STR profiling of human cell lines.


Subject(s)
Algorithms , Gene Expression Profiling/methods , Genotyping Techniques/standards , Microsatellite Repeats/genetics , Cell Line , Humans , Polymerase Chain Reaction
2.
Nat Biotechnol ; 39(9): 1141-1150, 2021 09.
Article in English | MEDLINE | ID: mdl-34504346

ABSTRACT

Clinical applications of precision oncology require accurate tests that can distinguish true cancer-specific mutations from errors introduced at each step of next-generation sequencing (NGS). To date, no bulk sequencing study has addressed the effects of cross-site reproducibility, nor the biological, technical and computational factors that influence variant identification. Here we report a systematic interrogation of somatic mutations in paired tumor-normal cell lines to identify factors affecting detection reproducibility and accuracy at six different centers. Using whole-genome sequencing (WGS) and whole-exome sequencing (WES), we evaluated the reproducibility of different sample types with varying input amount and tumor purity, and multiple library construction protocols, followed by processing with nine bioinformatics pipelines. We found that read coverage and callers affected both WGS and WES reproducibility, but WES performance was influenced by insert fragment size, genomic copy content and the global imbalance score (GIV; G > T/C > A). Finally, taking into account library preparation protocol, tumor content, read coverage and bioinformatics processes concomitantly, we recommend actionable practices to improve the reproducibility and accuracy of NGS experiments for cancer mutation detection.


Subject(s)
Benchmarking , Exome Sequencing/standards , Neoplasms/genetics , Sequence Analysis, DNA/standards , Whole Genome Sequencing/standards , Cell Line , Cell Line, Tumor , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation , Neoplasms/pathology , Reproducibility of Results
3.
Nat Biotechnol ; 39(9): 1151-1160, 2021 09.
Article in English | MEDLINE | ID: mdl-34504347

ABSTRACT

The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.


Subject(s)
Benchmarking , Breast Neoplasms/genetics , DNA Mutational Analysis/standards , High-Throughput Nucleotide Sequencing/standards , Whole Genome Sequencing/standards , Cell Line, Tumor , Datasets as Topic , Germ Cells , Humans , Mutation , Reference Standards , Reproducibility of Results
5.
Regen Med ; 6(2): 255-60, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21391858

ABSTRACT

Authentication of human tissues, cell lines and primary cell cultures (including stem cell preparations) used as therapeutic modalities is often performed using phenotyping and technologies capable of assessing identity to the species level (e.g., isoenzyme analysis and/or karyotyping). This authentication paradigm alone cannot provide assurance that the correct human cell preparation is administered, so careful labeling and tracking of cells from the donor, during manufacture and as part of the final product are also employed. Precise, accurate identification of human cells to the individual donor level could, however, significantly reduce the risks of exposing human subjects to misidentified cells. The availability of a standardized method for achieving this will provide a way to improve the safety profile of human cell-based products by providing assurance that a given lot of cells originated from the intended donor and were not inadvertently mixed or replaced with cells from other donors. In support of this goal, an international team of scientists has prepared a consensus standard on authentication of human cells using short tandem repeat profiling. Associated with the standard itself will be the establishment and maintenance of a public database of short tandem repeat profiles for commonly used cell lines.


Subject(s)
Biological Products/standards , Biometric Identification/methods , Biometric Identification/standards , Cells , Consensus , Cell Culture Techniques/methods , Cell Culture Techniques/standards , Cells/chemistry , Cells/cytology , Cells/metabolism , Consensus Development Conferences as Topic , Equipment Contamination , Gene Expression Profiling/standards , Gene Expression Profiling/statistics & numerical data , Humans , Microsatellite Repeats/genetics , Reference Standards , Sequence Analysis, DNA/standards , Sequence Analysis, DNA/statistics & numerical data , Stem Cells/chemistry , Stem Cells/cytology , Stem Cells/metabolism
7.
In Vitro Cell Dev Biol Anim ; 46(9): 727-32, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20614197

ABSTRACT

Cell misidentification and cross-contamination have plagued biomedical research for as long as cells have been employed as research tools. Examples of misidentified cell lines continue to surface to this day. Efforts to eradicate the problem by raising awareness of the issue and by asking scientists voluntarily to take appropriate actions have not been successful. Unambiguous cell authentication is an essential step in the scientific process and should be an inherent consideration during peer review of papers submitted for publication or during review of grants submitted for funding. In order to facilitate proper identity testing, accurate, reliable, inexpensive, and standardized methods for authentication of cells and cell lines must be made available. To this end, an international team of scientists is, at this time, preparing a consensus standard on the authentication of human cells using short tandem repeat (STR) profiling. This standard, which will be submitted for review and approval as an American National Standard by the American National Standards Institute, will provide investigators guidance on the use of STR profiling for authenticating human cell lines. Such guidance will include methodological detail on the preparation of the DNA sample, the appropriate numbers and types of loci to be evaluated, and the interpretation and quality control of the results. Associated with the standard itself will be the establishment and maintenance of a public STR profile database under the auspices of the National Center for Biotechnology Information. The consensus standard is anticipated to be adopted by granting agencies and scientific journals as appropriate methodology for authenticating human cell lines, stem cells, and tissues.


Subject(s)
Cell Biology/standards , Gene Expression Profiling/methods , Microsatellite Repeats/genetics , Specimen Handling/methods , Tissue Banks/standards , Cell Line , Humans , Stem Cells , United States
SELECTION OF CITATIONS
SEARCH DETAIL