Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Mol Pharm ; 17(11): 4375-4385, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33017153

ABSTRACT

Formaldehyde-inactivated toxoid vaccines have been in use for almost a century. Despite formaldehyde's deceptively simple structure, its reactions with proteins are complex. Treatment of immunogenic proteins with aqueous formaldehyde results in heterogenous mixtures due to a variety of adducts and cross-links. In this study, we aimed to further elucidate the reaction products of formaldehyde reaction with proteins and report unique modifications in formaldehyde-treated cytochrome c and corresponding synthetic peptides. Synthetic peptides (Ac-GDVEKGAK and Ac-GDVEKGKK) were treated with isotopically labeled formaldehyde (13CH2O or CD2O) followed by purification of the two main reaction products. This allowed for their structural elucidation by (2D)-nuclear magnetic resonance and nanoscale liquid chromatography-coupled mass spectrometry analysis. We observed modifications resulting from (i) formaldehyde-induced deamination and formation of α,ß-unsaturated aldehydes and methylation on two adjacent lysine residues and (ii) formaldehyde-induced methylation and formylation of two adjacent lysine residues. These products react further to form intramolecular cross-links between the two lysine residues. At higher peptide concentrations, these two main reaction products were also found to subsequently cross-link to lysine residues in other peptides, forming dimers and trimers. The accurate identification and quantification of formaldehyde-induced modifications improves our knowledge of formaldehyde-inactivated vaccine products, potentially aiding the development and registration of new vaccines.


Subject(s)
Cytochromes c/chemistry , Formaldehyde/pharmacology , Lysine/chemistry , Peptides/chemistry , Aldehydes/chemistry , Chromatography, High Pressure Liquid/methods , Cross-Linking Reagents/chemistry , Deamination/drug effects , Kinetics , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Methylation/drug effects , Molecular Structure , Vaccines, Inactivated/chemistry
2.
Immunology ; 156(1): 33-46, 2019 01.
Article in English | MEDLINE | ID: mdl-30317555

ABSTRACT

Systems vaccinology has proven a fascinating development in the last decade. Where traditionally vaccine development has been dominated by trial and error, systems vaccinology is a tool that provides novel and comprehensive understanding if properly used. Data sets retrieved from systems-based studies endorse rational design and effective development of safe and efficacious vaccines. In this review we first describe different omics-techniques that form the pillars of systems vaccinology. In the second part, the application of systems vaccinology in the different stages of vaccine development is described. Overall, this review shows that systems vaccinology has become an important tool anywhere in the vaccine development chain.


Subject(s)
Systems Biology , Vaccines/immunology , Vaccinology/trends , Animals , Datasets as Topic , Drug Design , Humans , Proteomics , Transcriptome , Vaccination
3.
J Proteome Res ; 14(7): 2929-42, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-25988566

ABSTRACT

The current resurgence of whooping cough is alarming, and improved pertussis vaccines are thought to offer a solution. Outer membrane vesicle vaccines (omvPV) are potential vaccine candidates, but omvPV-induced humoral responses have not yet been characterized in detail. The purpose of this study was to determine the antigen composition of omvPV and to elucidate the immunogenicity of the individual antigens. Quantitative proteome analysis revealed the complex composition of omvPV. The omvPV immunogenicity profile in mice was compared to those of classic whole cell vaccine (wPV), acellular vaccine (aPV), and pertussis infection. Pertussis-specific antibody levels, antibody isotypes, IgG subclasses, and antigen specificity were determined after vaccination or infection by using a combination of multiplex immunoassays, two-dimensional immunoblotting, and mass spectrometry. The vaccines and infection raised strong antibody responses, but large quantitative and qualitative differences were measured. The highest antibody levels were obtained by omvPV. All IgG subclasses (IgG1/IgG2a/IgG2b/IgG3) were elicited by omvPV and in a lower magnitude by wPV, but not by aPV (IgG1) or infection (IgG2a/b). The majority of omvPV-induced antibodies were directed against Vag8, BrkA, and LPS. The broad and balanced humoral response makes omvPV a promising pertussis vaccine candidate.


Subject(s)
Antibodies, Bacterial/immunology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Vaccines/immunology , Bordetella pertussis/immunology , Proteome , Animals , Antibodies, Bacterial/biosynthesis , Bacterial Outer Membrane Proteins/immunology , Chromatography, Liquid , Electrophoresis, Gel, Two-Dimensional , Mice , Tandem Mass Spectrometry , Whooping Cough/prevention & control
4.
Pharm Res ; 32(4): 1505-15, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25344321

ABSTRACT

PURPOSE: Influenza CD8(+) T-cell epitopes are conserved amongst influenza strains and can be recognized by influenza-specific cytotoxic T-cells (CTLs), which can rapidly clear infected cells. An influenza peptide vaccine that elicits these CTLs would therefore be an alternative to current influenza vaccines, which are not cross-reactive. However, peptide antigens are poorly immunogenic due to lack of delivery to antigen presenting cells, and therefore need additional formulation with a suitable delivery system. In this study, the potential of virosomes as a delivery system for an influenza T-cell peptide was investigated. METHODS: The conserved human HLA-A2.1 influenza T-cell epitope M158-66 was formulated with virosomes. The immunogenicity and protective effect of the peptide-loaded virosomes was assessed in HLA-A2 transgenic mice. Delivery properties of the virosomes were studied in mice and in in vitro dendritic cell cultures. RESULTS: Immunization of HLA-A2.1 transgenic C57BL/6 mice with peptide-loaded virosomes in the presence of the adjuvant CpG-ODN 1826 increased the number of peptide-specific CTLs. Vaccination with adjuvanted peptide-loaded virosomes reduced weight loss in mice after heterologous influenza infection. Association with fusion-active virosomes was found to be crucial for antigen uptake by dendritic cells, and subsequent induction of CTLs in mice. CONCLUSIONS: These results show that influenza virosomes loaded with conserved influenza epitopes could be the basis of a novel cross-protective influenza vaccine.


Subject(s)
Adjuvants, Immunologic/chemistry , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/immunology , Influenza Vaccines/administration & dosage , Oligodeoxyribonucleotides/chemistry , Animals , HLA-A2 Antigen/genetics , Humans , Influenza Vaccines/chemistry , Mice, Inbred C57BL , Mice, Transgenic , Peptide Fragments/immunology , Vaccines, Virosome/administration & dosage , Vaccines, Virosome/chemistry , Viral Matrix Proteins/immunology , Virosomes
5.
Vaccines (Basel) ; 10(7)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35891242

ABSTRACT

Vaccines undergo stringent batch-release testing, most often including in-vivo assays for potency. For combination vaccines, such as diphtheria-tetanus-pertussis (DTaP), chemical modification induced by formaldehyde inactivation, as well as adsorption to aluminum-based adjuvants, complicates antigen-specific in-vitro analysis. Here, a mass spectrometric method was developed that allows the identification and quantitation of DTaP antigens in a combination vaccine. Isotopically labeled, antigen-specific internal standard peptides were employed that permitted absolute quantitation of their antigen-derived peptide counterparts and, consequently, the individual antigens. We evaluated the applicability of the method on monovalent non-adjuvanted antigens, on final vaccine lots and on experimental vaccine batches, where certain antigens were omitted from the drug product. Apart from the applicability for final batch release, we demonstrated the suitability of the approach for in-process control monitoring. The peptide quantification method facilitates antigen-specific identification and quantification of combination vaccines in a single assay. This may contribute, as part of the consistency approach, to a reduction in the number of animal tests required for vaccine-batch release.

6.
J Pharm Sci ; 111(4): 1058-1069, 2022 04.
Article in English | MEDLINE | ID: mdl-35114211

ABSTRACT

The aim of this study was to demonstrate the strength of combining immunochemical and biophysical analysis tools for assessing the quality of Sabin inactivated poliovirus vaccine (Sabin-IPV) bulk products. We assessed Sabin-IPV serotypes 1, 2 and 3 from six different manufacturers and evaluated their comparability through biosensor analysis and biophysical characterization methods, including tryptophan fluorescence and asymmetrical flow field-flow fractionation - multi-angle light scattering analysis. These methods enabled us to assess antigenic as well as conformational and structural integrity profiles, respectively. Based on Sabin-IPV samples that were subjected to accelerated storage conditions, we revealed that existing immunochemical methods exhibit remarkably similar trends to the results obtained by the biophysical characterization methods. While the results underpin that the comparability of Sabin-IPV bulk products of different manufacturers is weak, information about their quality can rapidly be obtained by using both immunochemical and biophysical methods. Furthermore, the study highlights that quality assessment of Sabin-IPV can be obtained through biophysical techniques can complement the assessments performed with monoclonal antibodies and suggests that similar techniques could be employed to characterize other enteroviruses.


Subject(s)
Poliomyelitis , Poliovirus , Antibodies, Viral , Antigens, Viral , Humans , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated , Poliovirus Vaccine, Oral
7.
J Pharm Sci ; 111(4): 982-990, 2022 04.
Article in English | MEDLINE | ID: mdl-35090866

ABSTRACT

Aluminum hydroxide (Al(OH)3) and aluminum phosphate (AlPO4) are widely used adjuvants in human vaccines. However, a rationale to choose one or the other is lacking since the differences between molecular mechanisms of action of these adjuvants are unknown. In the current study, we compared the innate immune response induced by both adjuvants in vitro and in vivo. Proteome analysis of human primary monocytes was used to determine the immunological pathways activated by these adjuvants. Subsequently, analysis of immune cells present at the site of injection and proteome analysis of the muscle tissue revealed the differentially regulated processes related to the innate immune response in vivo. Incubation with Al(OH)3 specifically enhanced the activation of antigen processing and presentation pathways in vitro. In vivo experiments showed that only intramuscular (I.M.) immunization with Al(OH)3 attracted neutrophils, while I.M. immunization with AlPO4 attracted monocytes/macrophages to the site of injection. In addition, only I.M. immunization with Al(OH)3 enhanced the process of hemostasis after 96 hours, possibly related to neutrophilic extracellular trap formation. Both adjuvants differentially regulated various immune system-related processes. The results show that Al(OH)3 and AlPO4 act differently on the innate immune system. We speculate that these different regulations affect the interaction with cells, due to the different physicochemical properties of both adjuvants.


Subject(s)
Aluminum Hydroxide , Proteome , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , Aluminum , Aluminum Compounds , Aluminum Hydroxide/pharmacology , Humans , Immunity, Innate , Phosphates
8.
Pharm Res ; 28(1): 145-58, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20237826

ABSTRACT

PURPOSE: To determine the immunogenicity of diphtheria toxoid (DT) formulated in two types of vesicles following transcutaneous immunization (TCI) of mice onto microneedle array-treated skin. METHODS: DT-containing cationic liposomes or anionic surfactant-based vesicles were prepared by extrusion and sonication. The physicochemical properties were characterized in terms of size, ζ-potential, vesicle elasticity and antigen association. TCI was performed by applying formulations onto intact or microneedle array-pretreated mice skin, using cholera toxin as an adjuvant. Subcutaneous and intradermal immunizations were as control. Immune responses were evaluated by IgG and neutralizing antibody titers, and the immune-stimulatory properties were assessed using cultured dendritic cells. RESULTS: Stable DT-containing cationic liposomes (∼150 nm) and anionic vesicles (∼100 nm) were obtained. Incorporation of Span 80 increased liposome elasticity. About 90% and 77% DT was associated with liposomes and vesicles, respectively. TCI of all formulations resulted in substantial antibody titers only if microneedle pretreatment was applied. Co-administration of cholera toxin further augmented the immune responses of TCI. However, vesicle formulations didn't enhance the immunogenicity on either intact or microneedle-treated skin and showed low stimulatory activity on dendritic cells. CONCLUSIONS: Microneedle pretreatment and cholera toxin, but not antigen association to vesicles, enhances the immunogenicity of topically applied DT.


Subject(s)
Diphtheria Toxoid/administration & dosage , Immunization/methods , Microinjections/methods , Needles , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Cells, Cultured , Chemistry, Pharmaceutical , Dendritic Cells/immunology , Diphtheria Toxoid/immunology , Drug Carriers/chemistry , Elasticity , Female , Humans , Immunization/instrumentation , Immunoglobulin G/blood , Immunoglobulin G/immunology , Injections, Intradermal , Injections, Subcutaneous , Liposomes , Mice , Mice, Inbred BALB C , Microinjections/instrumentation
9.
J Am Soc Mass Spectrom ; 32(6): 1490-1497, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-33983728

ABSTRACT

Currently, animal tests are being used to confirm the potency and lack of toxicity of toxoid vaccines. In a consistency approach, animal tests could be replaced if production consistency (compared to known good products) can be proven in a panel of in vitro assays. By mimicking the in vivo antigen processing in a simplified in vitro approach, it may be possible to distinguish aberrant products from good products. To demonstrate this, heat-exposed diphtheria toxoid was subjected to partial digestion by cathepsin S (an endoprotease involved in antigen processing), and the peptide formation/degradation kinetics were mapped for various heated toxoids. To overcome the limitations associated with the very large number of samples, we used common reference-based tandem mass tag (TMT) labeling. Instead of using one label per condition with direct comparison between the set of labels, we compared multiple labeled samples to a common reference (a pooled sample containing an aliquot of each condition). In this method, the number of samples is not limited by the number of unique TMT labels. This TMT multiplexing strategy allows for a 15-fold reduction of analysis time while retaining the reliability advantage of TMT labeling over label-free quantification. The formation of the most important peptides could be followed over time and compared among several conditions. The changes in enzymatic degradation kinetics of diphtheria toxoid revealed several suitable candidate peptides for use in a quality control assay that can distinguish structurally aberrant diphtheria toxoid from compliant toxoids.


Subject(s)
Diphtheria Toxoid/metabolism , Peptides/analysis , Tandem Mass Spectrometry/methods , Diphtheria Toxoid/analysis , Tandem Mass Spectrometry/standards , Temperature
10.
Pharm Res ; 27(9): 1837-47, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20559701

ABSTRACT

PURPOSE: The purpose of this study was to gain insight into the delivery and immunogenicity of N-trimethyl chitosan (TMC) adjuvanted diphtheria toxoid (DT) formulations applied transcutaneously with microneedles. METHODS: Mice were vaccinated with DT-loaded TMC nanoparticles, a solution of TMC and DT (TMC/DT) or DT alone. The formulations were applied onto the skin before or after microneedle treatment with two different 300-microm-long microneedle arrays and also injected intradermally (ID). As a positive control, alum-adjuvanted DT (DT-alum) was injected subcutaneously (SC). Ex vivo confocal microscopy studies were performed with rhodamine-labelled TMC. RESULTS: Independent of the microneedle array used and the sequence of microneedle treatment and vaccine application, transcutaneous immunisation with the TMC/DT mixture elicited 8-fold higher IgG titres compared to the TMC nanoparticles or DT solution. The toxin-neutralising antibody titres from this group were similar to those elicited by SC DT-alum. After ID immunisation, both TMC-containing formulations induced enhanced titres compared to a DT solution. Confocal microscopy studies revealed that transport of the TMC nanoparticles across the microneedle conduits was limited compared to a TMC solution. CONCLUSIONS: In conclusion, TMC has an adjuvant function in transcutaneous immunisation with microneedles, but only if applied in a solution.


Subject(s)
Adjuvants, Pharmaceutic/chemistry , Chitosan/chemistry , Diphtheria Toxoid/administration & dosage , Drug Carriers/chemistry , Needles , Vaccination/methods , Administration, Cutaneous , Animals , Chemical Phenomena , Chlorocebus aethiops , Diphtheria Toxoid/chemistry , Diphtheria Toxoid/immunology , Diphtheria Toxoid/pharmacokinetics , Equipment Design , Female , Immunoglobulin G/blood , Injections, Intradermal , Mice , Mice, Hairless , Mice, Inbred BALB C , Microscopy, Confocal , Nanoparticles/administration & dosage , Skin/metabolism , Vaccination/instrumentation , Vero Cells
11.
Sci Rep ; 10(1): 11535, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32665578

ABSTRACT

Enzymatic degradation of protein antigens by endo-lysosomal proteases in antigen-presenting cells is crucial for achieving cellular immunity. Structural changes caused by vaccine production process steps, such as formaldehyde inactivation, could affect the sensitivity of the antigen to lysosomal proteases. The aim of this study was to assess the effect of the formaldehyde detoxification process on the enzymatic proteolysis of antigens by studying model proteins. Bovine serum albumin, ß-lactoglobulin A and cytochrome c were treated with various concentrations of isotopically labelled formaldehyde and glycine, and subjected to proteolytic digestion by cathepsin S, an important endo-lysosomal endoprotease. Degradation products were analysed by mass spectrometry and size exclusion chromatography. The most abundant modification sites were identified by their characteristic MS doublets. Unexpectedly, all studied proteins showed faster proteolytic degradation upon treatment with higher formaldehyde concentrations. This effect was observed both in the absence and presence of glycine, an often-used excipient during inactivation to prevent intermolecular crosslinking. Overall, subjecting proteins to formaldehyde or formaldehyde/glycine treatment results in changes in proteolysis rates, leading to an enhanced degradation speed. This accelerated degradation could have consequences for the immunogenicity and the efficacy of vaccine products containing formaldehyde-inactivated antigens.


Subject(s)
Cathepsins/metabolism , Endosomes/drug effects , Formaldehyde , Lysosomes/drug effects , Animals , Antigens/chemistry , Cattle , Chromatography, Liquid , Cytochromes c/chemistry , Endosomes/metabolism , Escherichia coli/metabolism , Glycine/chemistry , Humans , Kinetics , Lactoglobulins/chemistry , Lysosomes/metabolism , Mass Spectrometry , Peptides/chemistry , Proteolysis , Serum Albumin, Bovine/chemistry , Solvents
12.
Vaccines (Basel) ; 8(4)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271767

ABSTRACT

Currently, batch release of toxoid vaccines, such as diphtheria and tetanus toxoid, requires animal tests to confirm safety and immunogenicity. Efforts are being made to replace these tests with in vitro assays in a consistency approach. Limitations of current in vitro assays include the need for reference antigens and most are only applicable to drug substance, not to the aluminum adjuvant-containing and often multivalent drug product. To overcome these issues, a new assay was developed based on mimicking the proteolytic degradation processes in antigen-presenting cells with recombinant cathepsin S, followed by absolute quantification of the formed peptides by liquid chromatography-mass spectrometry. Temperature-exposed tetanus toxoids from several manufacturers were used as aberrant samples and could easily be distinguished from the untreated controls by using the newly developed degradomics assay. Consistency of various batches of a single manufacturer could also be determined. Moreover, the assay was shown to be applicable to Al(OH)3 and AlPO4-adsorbed tetanus toxoids. Overall, the assay shows potential for use in both stability studies and as an alternative for in vivo potency studies by showing batch-to-batch consistency of bulk toxoids as well as for aluminum-containing vaccines.

13.
Sci Rep ; 10(1): 7396, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32355188

ABSTRACT

A vaccine based on outer membrane vesicles of pertussis (omvPV) is protective in a mouse-challenge model and induces a broad antibody and mixed Th1/Th2/Th17 response against multiple antigens following subcutaneous immunization. However, this route did not result in mucosal immunity and did not prevent nasopharyngeal colonization. In this study, we explored the potential of intranasal immunization with omvPV. Only intranasal immunization induced strong mucosal immune responses that encompasses enhanced pulmonary and nasal IgA antibody levels, mainly directed against Vag8 and LPS. Furthermore, high numbers of IgA- and IgG-producing plasma cells were detected as well as lung-resident IgA memory B-cells. Finally, only intranasal immunization induced pulmonary Th1/Th17-related cytokine responses. The magnitude and type of systemic immunity was comparable between both routes and included high systemic IgG antibody levels, strong IgG-producing plasma cell responses, memory B-cells residing in the spleen and systemic Th1/Th2/Th17-related cytokine responses. Importantly, only intranasal immunization prevented colonization in both the lungs and the nasal cavity. In conclusion, intranasal omvPV immunization induces mucosal IgA and Th17-mediated responses without influencing the systemic immunity profile. These responses resulted in prevention of Bordetella pertussis colonization in the respiratory tract, including the nasal cavity, thereby potentially preventing transmission.


Subject(s)
Antibodies, Bacterial/immunology , Bordetella pertussis/immunology , Cell-Derived Microparticles/immunology , Immunity, Mucosal , Immunoglobulin A/immunology , Pertussis Vaccine/immunology , Th17 Cells/immunology , Whooping Cough/prevention & control , Administration, Intranasal , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Female , Immunologic Memory , Mice , Mice, Inbred BALB C , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/pathology , Whooping Cough/immunology , Whooping Cough/pathology
14.
J Pharm Sci ; 109(1): 543-557, 2020 01.
Article in English | MEDLINE | ID: mdl-31678246

ABSTRACT

Diphtheria toxoid is produced by detoxification of diphtheria toxin with formaldehyde. This study was performed to elucidate the chemical nature and location of formaldehyde-induced modifications in diphtheria toxoid. Diphtheria toxin was chemically modified using 4 different reactions with the following reagents: (1) formaldehyde and NaCNBH3, (2) formaldehyde, (3) formaldehyde and NaCNBH3 followed by formaldehyde and glycine, and (4) formaldehyde and glycine. The modifications were studied by SDS-PAGE, primary amino group determination, and liquid chromatography-electrospray mass spectrometry of chymotryptic digests. Reaction 1 resulted in quantitative dimethylation of all lysine residues. Reaction 2 caused intramolecular cross-links, including the NAD+-binding cavity and the receptor-binding site. Moreover, A fragments and B fragments were cross-linked by formaldehyde on part of the diphtheria toxoid molecules. Reaction 3 resulted in formaldehyde-glycine attachments, including in shielded areas of the protein. The detoxification reaction typically used for vaccine preparation (reaction 4) resulted in a combination of intramolecular cross-links and formaldehyde-glycine attachments. Both the NAD+-binding cavity and the receptor-binding site of diphtheria toxin were chemically modified. Although CD4+ T-cell epitopes were affected to some extent, one universal CD4+ T-cell epitope remained almost completely unaltered by the treatment with formaldehyde and glycine.


Subject(s)
Diphtheria Toxin/chemistry , Diphtheria Toxoid/chemistry , Epitopes, T-Lymphocyte/chemistry , Formaldehyde/chemistry , Borohydrides/chemistry , Chromatography, Reverse-Phase , Diphtheria Toxin/immunology , Diphtheria Toxoid/immunology , Drug Compounding , Electrophoresis, Polyacrylamide Gel , Epitopes, T-Lymphocyte/immunology , Glycine/chemistry , Models, Molecular , Protein Conformation , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
15.
J Pharm Sci ; 109(1): 750-760, 2020 01.
Article in English | MEDLINE | ID: mdl-31449816

ABSTRACT

Subunit vaccines often contain colloidal aluminum salt-based adjuvants to activate the innate immune system. These aluminum salts consist of micrometer-sized aggregates. It is well-known that particle size affects the adjuvant effect of particulate adjuvants. In this study, the activation of human monocytes by hexagonal-shaped gibbsite (ø = 210 ± 40 nm) and rod-shaped boehmite (ø = 83 ± 827 nm) was compared with classical aluminum oxyhydroxide adjuvant (alum). To this end, human primary monocytes were cultured in the presence of alum, gibbsite, or boehmite. The transcriptome and proteome of the monocytes were investigated by using quantitative polymerase chain reaction and mass spectrometry. Human monocytic THP-1 cells were used to investigate the effect of the particles on cellular maturation, differentiation, activation, and cytokine secretion, as measured by flow cytometry and enzyme-linked immunosorbent assay. Each particle type resulted in a specific gene expression profile. IL-1ß and IL-6 secretion was significantly upregulated by boehmite and alum. Of the 7 surface markers investigated, only CD80 was significantly upregulated by alum and none by gibbsite or boehmite. Gibbsite hardly activated the monocytes. Boehmite activated human primary monocytes equally to alum, but induced a much milder stress-related response. Therefore, boehmite was identified as a promising adjuvant candidate.


Subject(s)
Adjuvants, Immunologic/pharmacology , Aluminum Hydroxide/pharmacology , Aluminum Oxide/pharmacology , Immunity, Innate/drug effects , Monocytes/drug effects , Adjuvants, Immunologic/chemistry , Aluminum Hydroxide/chemistry , Aluminum Oxide/chemistry , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , Cell Differentiation/drug effects , Colloids , Drug Compounding , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Monocytes/immunology , Monocytes/metabolism , Particle Size , THP-1 Cells , Transcriptome
16.
Front Immunol ; 10: 1364, 2019.
Article in English | MEDLINE | ID: mdl-31275314

ABSTRACT

Bordetella (B.) pertussis resurgence affects not only the unvaccinated, but also the vaccinated population. Different vaccines are available, however, it is currently unknown whether the type of childhood vaccination has an influence on antibody responses following a B. pertussis infection later in life. Therefore, the study aim was to profile serum antibody responses in young adults with suspected B. pertussis infections, immunized during childhood with either whole-cell (wPV) or monocomponent acellular pertussis (aPV) vaccines. Serum anti-pertussis toxin (PTx) IgG antibody levels served as an indicator for a recent B. pertussis infection. Leftover sera from a diagnostic laboratory from 36 Danish individuals were included and divided into four groups based on immunization background (aPV vs. wPV) and serum anti-PTx IgG levels (- vs. +). Pertussis-specific IgG/IgA antibody levels and antigen specificity were determined by using multiplex immunoassays (MIA), one- and two-dimensional immunoblotting (1 & 2DEWB), and mass spectrometry. Besides enhanced anti-PTx levels, wPV(+) and aPV(+) groups showed increased IgG and IgA levels against pertactin, filamentous hemagglutinin, fimbriae 2/3, and pertussis outer membrane vesicles (OMV). In the wPV(-) and aPV(-) groups, only low levels of anti-OMV antibodies were detected. 1DEWB demonstrated that antibody patterns differed between groups but also between individuals with the same immunization background and anti-PTx levels. 2DWB analysis for serum IgG revealed 133 immunogenic antigens of which 40 were significantly different between groups allowing to differentiate wPV(+) and aPV(+) groups. Similarly, for serum IgA, 7 of 47 immunogenic protein spots were significantly different. This study demonstrated that B. pertussis infection-induced antibody responses were distinct on antigen level between individuals with either wPV or aPV immunization background. Importantly, only 2DEWB and not MIA could detect these differences indicating the potential of this method. Moreover, in individuals immunized with an aPV containing only PTx in childhood, the infection-induced antibody responses were not limited to PTx alone.


Subject(s)
Antibodies, Bacterial/blood , Antibody Specificity/immunology , Bordetella pertussis/immunology , Pertussis Vaccine/immunology , Whooping Cough/immunology , Adolescent , Antigens, Bacterial/immunology , Electrophoresis, Gel, Two-Dimensional , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Pertussis Toxin/immunology , Vaccination , Vaccines, Acellular/immunology , Whooping Cough/prevention & control , Young Adult
17.
J Proteomics ; 175: 144-155, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29317357

ABSTRACT

Aluminum-based adjuvants are the most widely used adjuvants in human vaccines. A comprehensive understanding of the mechanism of action of aluminum adjuvants at the molecular level, however, is still elusive. Here, we unravel the effects of aluminum hydroxide Al(OH)3 by a systems-wide analysis of the Al(OH)3-induced monocyte response. Cell response analysis by cytokine release was combined with (targeted) transcriptome and full proteome analysis. Results from this comprehensive study revealed two novel pathways to become activated upon monocyte stimulation with Al(OH)3: the first pathway was IFNß signaling possibly induced by DAMP sensing pathways like TLR or NOD1 activation, and second the HLA class I antigen processing and presentation pathway. Furthermore, known mechanisms of the adjuvant activity of Al(OH)3 were elucidated in more detail such as inflammasome and complement activation, homeostasis and HLA-class II upregulation, possibly related to increased IFNγ gene expression. Altogether, our study revealed which immunological pathways are activated upon stimulation of monocytes with Al(OH)3, refining our knowledge on the adjuvant effect of Al(OH)3 in primary monocytes. SIGNIFICANCE: Aluminum salts are the most used adjuvants in human vaccines but a comprehensive understanding of the working mechanism of alum adjuvants at the molecular level is still elusive. Our Systems Vaccinology approach, combining complementary molecular biological, immunological and mass spectrometry-based techniques gave a detailed insight in the molecular mechanisms and pathways induced by Al(OH)3 in primary monocytes. Several novel immunological relevant cellular pathways were identified: type I interferon secretion potentially induced by TLR and/or NOD like signaling, the activation of the inflammasome and the HLA Class-I and Class-II antigen presenting pathways induced by IFNγ. This study highlights the mechanisms of the most commonly used adjuvant in human vaccines by combing proteomics, transcriptomics and cytokine analysis revealing new potential mechanisms of action for Al(OH)3.


Subject(s)
Aluminum Hydroxide/pharmacology , Monocytes/drug effects , Adjuvants, Immunologic/pharmacology , Antigen Presentation , Cytokines/metabolism , Gene Expression Profiling , Humans , Immunity, Innate/drug effects , Inflammation/immunology , Monocytes/metabolism , Proteomics
18.
J Control Release ; 286: 167-178, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30048656

ABSTRACT

Worldwide resurgence of whooping cough calls for improved, next-generation pertussis vaccines that induce broad and long-lasting immunity. A mucosal pertussis vaccine based on outer membrane vesicles (omvPV) is a promising candidate. Further, a vaccine that is stable outside the cold chain would be of substantial advantage for worldwide distribution and application. A vaccine formulated as a powder could both stabilize the vaccine as well as make it suitable for pulmonary vaccination. To that end, we developed a spray dried omvPV with improved stability compared to the liquid omvPV formulation. Spray drying did not affect the structural integrity of the omvPV. The antigenicity of Vag8, a major antigen in omvPV was diminished slightly and an altered tryptophan fluorescence indicated some changes in protein structure. However, when administered via the pulmonary route in mice after reconstitution, spray dried omvPV showed comparable immune responses and protection against challenge with live B. pertussis as liquid omvPV. Mucosal IgA and Th17 responses were established in addition to broad systemic IgG and Th1/Th17 responses, indicating the induction of an effective immunity profile. Overall, a spray dried omvPV was developed that maintained effective immunogenic properties and has an improved storage stability.


Subject(s)
Antigens, Bacterial/administration & dosage , Bordetella pertussis/immunology , Pertussis Vaccine/administration & dosage , Whooping Cough/prevention & control , Animals , Antigens, Bacterial/chemistry , Antigens, Bacterial/immunology , Antigens, Bacterial/therapeutic use , Bordetella pertussis/chemistry , Desiccation , Drug Administration Routes , Drug Stability , Female , Hot Temperature , Lung/immunology , Mice, Inbred BALB C , Particle Size , Pertussis Vaccine/chemistry , Pertussis Vaccine/immunology , Pertussis Vaccine/therapeutic use , Powders , Th1 Cells/immunology , Th17 Cells/immunology , Vaccination , Whooping Cough/immunology
19.
Front Immunol ; 9: 525, 2018.
Article in English | MEDLINE | ID: mdl-29593747

ABSTRACT

Influenza peptide antigens coding for conserved T cell epitopes have the capacity to induce cross-protective influenza-specific immunity. Short peptide antigens used as a vaccine, however, often show poor immunogenicity. In this study, we demonstrate that whole-inactivated influenza virus (WIV) acts as an adjuvant for influenza peptide antigens, as shown by the induction of peptide-specific CD8+ T cells in HLA-A2.1 transgenic mice upon vaccination with the influenza-M1-derived GILGFVFTL peptide (GIL), formulated with WIV. By screening various concentrations of GIL and WIV, we found that both components contributed to the GIL-specific T cell response. Whereas co-localization of the peptide antigen and WIV adjuvant was found to be important, neither physical association between peptide and WIV nor fusogenic activity of WIV were relevant for the adjuvant effect of WIV. We furthermore show that WIV may adjuvate T cell responses to a variety of peptides, using pools of either conserved wild-type influenza peptides or chemically altered peptide ligands. This study shows the potential of WIV as an adjuvant for influenza peptides. The simple formulation process and the solid safety record of WIV make this an attractive adjuvant for T cell peptides, and may also be used for non-influenza antigens.


Subject(s)
Adjuvants, Immunologic , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Influenza A Virus, H5N1 Subtype , Peptides/immunology , Virus Inactivation , Animals , Female , Mice, Transgenic
20.
PLoS One ; 13(5): e0197885, 2018.
Article in English | MEDLINE | ID: mdl-29813132

ABSTRACT

Aluminum-based adjuvants have widely been used in human vaccines since 1926. In the absence of antigens, aluminum-based adjuvants can initiate the inflammatory preparedness of innate cells, yet the impact of antigens on this response has not been investigated so far. In this study, we address the modulating effect of vaccine antigens on the monocyte-derived innate response by comparing processes initiated by Al(OH)3 and by Infanrix, an Al(OH)3-adjuvanted trivalent combination vaccine (DTaP), containing diphtheria toxoid (D), tetanus toxoid (T) and acellular pertussis (aP) vaccine antigens. A systems-wide analysis of stimulated monocytes was performed in which full proteome analysis was combined with targeted transcriptome analysis and cytokine analysis. This comprehensive study revealed four major differences in the monocyte response, between plain Al(OH)3 and DTaP stimulation conditions: (I) DTaP increased the anti-inflammatory cytokine IL-10, whereas Al(OH)3 did not; (II) Al(OH)3 increased the gene expression of IFNγ, IL-2 and IL-17a in contrast to the limited induction or even downregulation by DTaP; (III) increased expression of type I interferons-induced proteins was not observed upon DTaP stimulation, but was observed upon Al(OH)3 stimulation; (IV) opposing regulation of protein localization pathways was observed for Al(OH)3 and DTaP stimulation, related to the induction of exocytosis by Al(OH)3 alone. This study highlights that vaccine antigens can antagonize Al(OH)3-induced programming of the innate immune responses at the monocyte level.


Subject(s)
Aluminum Hydroxide/pharmacology , Antigens, Bacterial/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Immunity, Innate/drug effects , Immunity, Innate/immunology , Monocytes/drug effects , Monocytes/immunology , Adult , Antigen Presentation/drug effects , Cell Differentiation/drug effects , Cell Differentiation/immunology , Humans , Inflammasomes/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Monocytes/cytology , Signal Transduction/drug effects , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL