Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Appl Microbiol Biotechnol ; 103(11): 4393-4404, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31001743

ABSTRACT

Many ketoses or organic acids can be produced by membrane-associated oxidation with Gluconobacter oxydans. In this study, the oxidation of meso-erythritol to L-erythrulose was investigated with the strain G. oxydans 621HΔupp BP.8, a multideletion strain lacking the genes for eight membrane-bound dehydrogenases. First batch biotransformations with growing cells showed re-consumption of L-erythrulose by G. oxydans 621HΔupp BP.8 in contrast to resting cells. The batch biotransformation with 2.8 g L-1 resting cells of G. oxydans 621HΔupp BP.8 in a DO-controlled stirred-tank bioreactor resulted in 242 g L-1 L-erythrulose with a product yield of 99% (w/w) and a space-time yield of 10 g L-1 h-1. Reaction engineering studies showed substrate excess inhibition as well as product inhibition of G. oxydans 621HΔupp BP.8 in batch biotransformations. In order to overcome substrate inhibition, a continuous membrane bioreactor with full cell retention was applied for meso-erythritol oxidation with resting cells of G. oxydans 621HΔupp BP.8. At a mean hydraulic residence time of 2 h, a space-time yield of 27 g L-1 h-1 L-erythrulose was achieved without changing the product yield of 99% (w/w) resulting in a cell-specific product yield of up to 4.4 gP gX-1 in the steady state. The product concentration (54 g L-1 L-erythrulose) was reduced in the continuous biotransformation process compared with the batch process to avoid product inhibition.


Subject(s)
Erythritol/metabolism , Gene Deletion , Gluconobacter oxydans/genetics , Gluconobacter oxydans/metabolism , Metabolic Engineering/methods , Tetroses/metabolism , Biotransformation , Gluconobacter oxydans/enzymology , Gluconobacter oxydans/growth & development , Oxidation-Reduction , Oxidoreductases/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL