Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters

Publication year range
1.
Blood ; 143(18): 1856-1872, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38427583

ABSTRACT

ABSTRACT: Allogeneic stem cell transplantation (alloSCT) is a curative treatment for hematological malignancies. After HLA-matched alloSCT, antitumor immunity is caused by donor T cells recognizing polymorphic peptides, designated minor histocompatibility antigens (MiHAs), that are presented by HLA on malignant patient cells. However, T cells often target MiHAs on healthy nonhematopoietic tissues of patients, thereby inducing side effects known as graft-versus-host disease. Here, we aimed to identify the dominant repertoire of HLA-I-restricted MiHAs to enable strategies to predict, monitor or modulate immune responses after alloSCT. To systematically identify novel MiHAs by genome-wide association screening, T-cell clones were isolated from 39 transplanted patients and tested for reactivity against 191 Epstein-Barr virus transformed B cell lines of the 1000 Genomes Project. By discovering 81 new MiHAs, we more than doubled the antigen repertoire to 159 MiHAs and demonstrated that, despite many genetic differences between patients and donors, often the same MiHAs are targeted in multiple patients. Furthermore, we showed that one quarter of the antigens are cryptic, that is translated from unconventional open reading frames, for example long noncoding RNAs, showing that these antigen types are relevant targets in natural immune responses. Finally, using single cell RNA-seq data, we analyzed tissue expression of MiHA-encoding genes to explore their potential role in clinical outcome, and characterized 11 new hematopoietic-restricted MiHAs as potential targets for immunotherapy. In conclusion, we expanded the repertoire of HLA-I-restricted MiHAs and identified recurrent, cryptic and hematopoietic-restricted antigens, which are fundamental to predict, follow or manipulate immune responses to improve clinical outcome after alloSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class I , Minor Histocompatibility Antigens , Humans , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/genetics , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/genetics , T-Lymphocytes/immunology , Genome-Wide Association Study , Transplantation, Homologous , Female , Male
2.
Proc Natl Acad Sci U S A ; 119(49): e2214331119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442096

ABSTRACT

Human leukocyte antigen (HLA) molecules present small peptide antigens to T cells, thereby allowing them to recognize pathogen-infected and cancer cells. A central dogma over the last 50+ y is that peptide binding to HLA molecules is mediated by the docking of side chains of particular amino acids in the peptide into pockets in the HLA molecules in a conserved N- to C-terminal orientation. Whether peptides can be presented in a reversed C- to N-terminal orientation remains unclear. Here, we performed large-scale identification of peptides bound to HLA-DP molecules and observed that in addition to peptide binding in an N- to C-terminal orientation, in 9 out of 14 HLA-DP allotypes, reverse motifs are found, compatible with C- to N-terminal peptide binding. Moreover, we isolated high-avidity human cytomegalovirus (CMV)-specific HLA-DP-restricted CD4+ T cells from the memory repertoire of healthy donors and demonstrate that such T cells recognized CMV-derived peptides bound to HLA-DPB1*01:01 or *05:01 in a reverse C- to N-terminal manner. Finally, we obtained a high-resolution HLA-DPB1*01:01-CMVpp65(142-158) peptide crystal structure, which is the molecular basis for C- to N-terminal peptide binding to HLA-DP. Our results point to unique features of HLA-DP molecules that substantially broaden the HLA class II bound peptide repertoire to combat pathogens and eliminate cancer cells.


Subject(s)
Cytomegalovirus Infections , Peptides , Humans , Amino Acids , Cytomegalovirus , Histocompatibility Antigens Class II , HLA-DP Antigens/immunology , T-Lymphocytes/immunology
3.
J Immunol ; 208(8): 1851-1856, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35379743

ABSTRACT

Unconventional HLA class I-restricted CD8+ T cell epitopes, longer than 10 aa, have been implicated to play a role in human immunity against viruses and cancer. T cell recognition of long peptides, centrally bulging from the HLA cleft, has been described previously. Alternatively, long peptides can contain a linear HLA-bound core peptide, with a N- or C-terminal peptide "tail" extending from the HLA peptide binding groove. The role of such a peptide "tail" in CD8+ T cell recognition remains unclear. In this study, we identified a 20mer peptide (FLPTPEELGLLGPPRPQVLA [FLP]) derived from the IL-27R subunit α gene restricted to HLA-A*02:01, for which we solved the crystal structure and demonstrated a long C-terminal "tail" extension. FLP-specific T cell clones demonstrated various recognition modes, some T cells recognized the FLP core peptide, while for other T cells the peptide tail was essential for recognition. These results demonstrate a crucial role for a C-terminal peptide tail in immunogenicity.


Subject(s)
CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , HLA-A2 Antigen , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Genes, MHC Class I/genetics , Genes, MHC Class I/immunology , HLA-A Antigens/genetics , HLA-A Antigens/immunology , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , Humans , Peptides/genetics , Peptides/immunology
4.
Cell Mol Life Sci ; 80(10): 298, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37728691

ABSTRACT

Allogeneic stem cell transplantation (alloSCT) can be curative for hemato-oncology patients due to effective graft-versus-tumor immunity. However, relapse remains the major cause of treatment failure, emphasizing the need for adjuvant immunotherapies. In this regard, post-transplantation dendritic cell (DC) vaccination is a highly interesting strategy to boost graft-versus-tumor responses. Previously, we developed a clinically applicable protocol for simultaneous large-scale generation of end-stage blood DC subsets from donor-derived CD34+ stem cells, including conventional type 1 and 2 DCs (cDC1s and cDC2s), and plasmacytoid DCs (pDCs). In addition, the total cultured end-product (DC-complete vaccine), also contains non-end-stage-DCs (i.e. non-DCs). In this study, we aimed to dissect the phenotypic identity of these non-DCs and their potential immune modulatory functions on the potency of cDCs and pDCs in stimulating tumor-reactive CD8+ T and NK cell responses, in order to obtain rationale for clinical translation of our DC-complete vaccine. The non-DC compartment was heterogeneous and comprised of myeloid progenitors and (immature) granulocyte- and monocyte-like cells. Importantly, non-DCs potentiated toll-like receptor-induced DC maturation, as reflected by increased expression of co-stimulatory molecules and enhanced cDC-derived IL-12 and pDC-derived IFN-α production. Additionally, antigen-specific CD8+ T cells effectively expanded upon DC-complete vaccination in vitro and in vivo. This effect was strongly augmented by non-DCs in an antigen-independent manner. Moreover, non-DCs did not impair in vitro DC-mediated NK cell activation, degranulation nor cytotoxicity. Notably, in vivo i.p. DC-complete vaccination activated i.v. injected NK cells. Together, these data demonstrate that the non-DC compartment potentiates DC-mediated activation and expansion of antigen-specific CD8+ T cells and do not impair NK cell responses in vitro and in vivo. This underscores the rationale for further clinical translation of our CD34+-derived DC-complete vaccine in hemato-oncology patients post alloSCT.


Subject(s)
CD8-Positive T-Lymphocytes , Interleukin-12 , Humans , Dendritic Cells , Lymphocyte Activation , Antigens, CD34 , Cell Adhesion Molecules
5.
Mol Ther ; 30(2): 564-578, 2022 02 02.
Article in English | MEDLINE | ID: mdl-34371177

ABSTRACT

CAR T cell therapy has shown great promise for the treatment of B cell malignancies. However, antigen-negative escape variants often cause disease relapse, necessitating the development of multi-antigen-targeting approaches. We propose that a T cell receptor (TCR)-based strategy would increase the number of potential antigenic targets, as peptides from both intracellular and extracellular proteins can be recognized. Here, we aimed to isolate a broad range of promising TCRs targeting multiple antigens for treatment of B cell malignancies. As a first step, 28 target genes for B cell malignancies were selected based on gene expression profiles. Twenty target peptides presented in human leukocyte antigen (HLA)-A∗01:01, -A∗24:02, -B∗08:01, or -B∗35:01 were identified from the immunopeptidome of B cell malignancies and used to form peptide-HLA (pHLA)-tetramers for T cell isolation. Target-peptide-specific CD8 T cells were isolated from HLA-mismatched healthy donors and subjected to a stringent stepwise selection procedure to ensure potency and eliminate cross-reactivity. In total, five T cell clones specific for FCRL5 in HLA-A∗01:01, VPREB3 in HLA-A∗24:02, and BOB1 in HLA-B∗35:01 recognized B cell malignancies. For all three specificities, TCR gene transfer into CD8 T cells resulted in cytokine production and efficient killing of multiple B cell malignancies. In conclusion, using this systematic approach we successfully identified three promising TCRs for T cell therapy against B cell malignancies.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , CD8-Positive T-Lymphocytes , Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive/methods , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism
6.
J Immunol ; 204(12): 3273-3282, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32350084

ABSTRACT

HLA-DP alleles can be classified into functional T cell epitope (TCE) groups. TCE-1 and TCE-2 are clearly defined, but TCE-3 still represents an heterogeneous group. Because polymorphisms in HLA-DP influence the presented peptidome, we investigated whether the composition of peptides binding in HLA-DP may be used to refine the HLA-DP group classification. Peptidomes of human HLA-DP-typed B cell lines were analyzed with mass spectrometry after immunoaffinity chromatography and peptide elution. Gibbs clustering was performed to identify motifs of binding peptides. HLA-DP peptide-binding motifs showed a clear association with the HLA-DP allele-specific sequences of the binding groove. Hierarchical clustering of HLA-DP immunopeptidomes was performed to investigate the similarities and differences in peptidomes of different HLA-DP molecules, and this clustering resulted in the categorization of HLA-DP alleles into 3-DP peptidome clusters (DPC). The peptidomes of HLA-DPB1*09:01, -10:01, and -17:01 (TCE-1 alleles) and HLA-DPB1*04:01, -04:02, and -02:01 (TCE-3 alleles) were separated in two maximal distinct clusters, DPC-1 and DPC-3, respectively, reflecting their previous TCE classification. HLA-DP alleles categorized in DPC-2 shared certain similar peptide-binding motifs with DPC-1 or DPC-3 alleles, but significant differences were observed for other positions. Within DPC-2, divergence between the alleles was observed based on the preference for different peptide residues at position 9. In summary, immunopeptidome analysis was used to unravel functional hierarchies among HLA-DP alleles, providing new molecular insights into HLA-DP classification.


Subject(s)
Epitopes, T-Lymphocyte/genetics , HLA-DP beta-Chains/genetics , HLA-DP beta-Chains/immunology , Peptides/genetics , Polymorphism, Genetic/genetics , Alleles , B-Lymphocytes/immunology , Binding Sites/genetics , Binding Sites/immunology , Cell Line , Cell Line, Tumor , Epitopes, T-Lymphocyte/immunology , Hematopoietic Stem Cell Transplantation/methods , Histocompatibility Testing/methods , Humans , K562 Cells , Peptides/immunology
7.
Cancer Immunol Immunother ; 70(11): 3167-3181, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33796917

ABSTRACT

Allogeneic stem cell transplantation (alloSCT), following induction chemotherapy, can be curative for hemato-oncology patients due to powerful graft-versus-tumor immunity. However, disease recurrence remains the major cause of treatment failure, emphasizing the need for potent adjuvant immunotherapy. In this regard, dendritic cell (DC) vaccination is highly attractive, as DCs are the key orchestrators of innate and adaptive immunity. Natural DC subsets are postulated to be more powerful compared with monocyte-derived DCs, due to their unique functional properties and cross-talk capacity. Yet, obtaining sufficient numbers of natural DCs, particularly type 1 conventional DCs (cDC1s), is challenging due to low frequencies in human blood. We developed a clinically applicable culture protocol using donor-derived G-CSF mobilized CD34+ hematopoietic progenitor cells (HPCs) for simultaneous generation of high numbers of cDC1s, cDC2s and plasmacytoid DCs (pDCs). Transcriptomic analyses demonstrated that these ex vivo-generated DCs highly resemble their in vivo blood counterparts. In more detail, we demonstrated that the CD141+CLEG9A+ cDC1 subset exhibited key features of in vivo cDC1s, reflected by high expression of co-stimulatory molecules and release of IL-12p70 and TNF-α. Furthermore, cDC1s efficiently primed alloreactive T cells, potently cross-presented long-peptides and boosted expansion of minor histocompatibility antigen-experienced T cells. Moreover, they strongly enhanced NK cell activation, degranulation and anti-leukemic reactivity. Together, we developed a robust culture protocol to generate highly functional blood DC subsets for in vivo application as tailored adjuvant immunotherapy to boost innate and adaptive anti-tumor immunity in alloSCT patients.


Subject(s)
Cell Culture Techniques/methods , Dendritic Cells/immunology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , Antigen Presentation/immunology , Antigens, CD34 , Cross-Priming/immunology , Humans , Lymphocyte Activation/immunology
8.
Blood ; 129(10): 1284-1295, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28053195

ABSTRACT

Immunotherapy for hematological malignancies or solid tumors by administration of monoclonal antibodies or T cells engineered to express chimeric antigen receptors or T-cell receptors (TCRs) has demonstrated clinical efficacy. However, antigen-loss tumor escape variants and the absence of currently targeted antigens on several malignancies hamper the widespread application of immunotherapy. We have isolated a TCR targeting a peptide of the intracellular B cell-specific transcription factor BOB1 presented in the context of HLA-B*07:02. TCR gene transfer installed BOB1 specificity and reactivity onto recipient T cells. TCR-transduced T cells efficiently lysed primary B-cell leukemia, mantle cell lymphoma, and multiple myeloma in vitro. We also observed recognition and lysis of healthy BOB1-expressing B cells. In addition, strong BOB1-specific proliferation could be demonstrated for TCR-modified T cells upon antigen encounter. Furthermore, clear in vivo antitumor reactivity was observed of BOB1-specific TCR-engineered T cells in a xenograft mouse model of established multiple myeloma. Absence of reactivity toward a broad panel of BOB1- but HLA-B*07:02+ nonhematopoietic and hematopoietic cells indicated no off-target toxicity. Therefore, administration of BOB1-specific TCR-engineered T cells may provide novel cellular treatment options to patients with B-cell malignancies, including multiple myeloma.


Subject(s)
Immunotherapy, Adoptive/methods , Lymphoma, Non-Hodgkin/immunology , Multiple Myeloma/immunology , Receptors, Antigen, T-Cell/immunology , Trans-Activators/antagonists & inhibitors , Animals , Cell Line, Tumor , Flow Cytometry , Genetic Engineering/methods , Humans , Mice , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
9.
Proteomics ; 18(12): e1700250, 2018 06.
Article in English | MEDLINE | ID: mdl-29251415

ABSTRACT

Allogeneic stem cell transplantation has emerged as immunotherapy in the treatment of a variety of hematological malignancies. Its efficacy depends on induction of graft versus leukemia by donor lymphocytes. Both graft versus leukemia and graft versus host disease are induced by T cells reactive against polymorphic peptides, called minor histocompatibility antigens (MiHA), which differ between patient and donor and are presented in the context of self-HLA (where HLA is human leukocyte antigen). The allelic counterpart (AC) of the MiHA is generally considered to be absent at the cell surface, based on the absence of immune responses directed against the AC. To study this in detail, we evaluate the recognition, HLA-binding affinity, and cell surface expression of three selected MiHA. By quantitative MS, we demonstrate the similarly abundant expression of both MiHA and AC at the cell surface. We conclude that the absent recognition of the AC cannot generally be explained by insufficient processing and presentation at the cell surface of the AC.


Subject(s)
Cell Membrane/immunology , Leukemia, Myeloid, Acute/immunology , Minor Histocompatibility Antigens/immunology , Peptide Fragments/immunology , T-Lymphocytes/immunology , Alleles , Cell Membrane/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Minor Histocompatibility Antigens/metabolism , Peptide Fragments/metabolism , Protein Binding , Protein Isoforms , T-Lymphocytes/metabolism
10.
Cytotherapy ; 20(4): 543-555, 2018 04.
Article in English | MEDLINE | ID: mdl-29449085

ABSTRACT

BACKGROUND: Adoptive transfer of donor-derived T cells can be applied to improve immune reconstitution in immune-compromised patients after allogeneic stem cell transplantation. The separation of beneficial T cells from potentially harmful T cells can be achieved by using the major histocompatibility complex (MHC) I-Streptamer isolation technology, which has proven its feasibility for the fast and pure isolation of T-cell populations with a single specificity. We have analyzed the feasibility of the simultaneous isolation of multiple antigen-specific T-cell populations in one procedure by combining different MHC I-Streptamers. METHODS: First, the effect of combining different amounts of MHC I-Streptamers used in the isolation procedure on the isolation efficacy of target antigen-specific T cells and on the number of off-target co-isolated contaminating cells was assessed. The feasibility of this approach was demonstrated in large-scale validation procedures targeting both high and low frequent T-cell populations using the Good Manufacturing Practice (GMP)-compliant CliniMACS Plus device. RESULTS: T-cell products targeting up to 24 different T-cell populations could be isolated in one, simultaneous MHC I-Streptamer procedure, by adjusting the amount of MHC I- Streptamers per target antigen-specific T-cell population. Concurrently, the co-isolation of potentially harmful contaminating T cells remained below our safety limit. This technology allows the reproducible isolation of high and low frequent T-cell populations. However, the expected therapeutic relevance of direct clinical application without in vitro expansion of these low frequent T-cell populations is questionable. DISCUSSION: This study provides a feasible, fast and safe method for the generation of highly personalized MHC I-Streptamer isolated T-cell products for adoptive immunotherapy.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Immunomagnetic Separation/methods , Leukapheresis/methods , Leukocytes, Mononuclear/cytology , Oligopeptides/metabolism , Recombinant Fusion Proteins/metabolism , T-Lymphocyte Subsets/cytology , Cells, Cultured , Cytomegalovirus/immunology , Feasibility Studies , Hematopoietic Stem Cell Transplantation , Histocompatibility Antigens Class I/chemistry , Humans , Immunotherapy, Adoptive , Leukocytes, Mononuclear/classification , Leukocytes, Mononuclear/immunology , Oligopeptides/chemistry , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Recombinant Fusion Proteins/chemistry , T-Lymphocyte Subsets/classification , T-Lymphocytes/classification , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tissue Donors
11.
Blood ; 125(6): 949-58, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25414443

ABSTRACT

Immunotherapy of B-cell malignancies using CD19-targeted chimeric antigen receptor-transduced T cells or CD20-targeted therapeutic monoclonal antibodies has shown clinical efficacy. However, refractory disease and the emergence of antigen-loss tumor escape variants after treatment demonstrate the need to target additional antigens. Here we aimed to target the B-cell receptor-associated protein CD79b by a T-cell receptor (TCR)-based approach. Because thymic selection depletes high-avidity T cells recognizing CD79b-derived peptides presented in self-HLA molecules, we aimed to isolate T cells recognizing these peptides presented in allogeneic HLA. Peptide-HLA tetramers composed of CD79b peptides bound to either HLA-A2 or HLA-B7 were used to isolate T-cell clones from HLA-A*0201 and B*0702-negative individuals. For 3 distinct T-cell clones, CD79b specificity was confirmed through CD79b gene transduction and CD79b-specific shRNA knockdown. The CD79b-specific T-cell clones were highly reactive against CD79b-expressing primary B-cell malignancies, whereas no recognition of nonhematopoietic cells was observed. Although lacking CD79b-cell surface expression, intermediate reactivity toward monocytes, hematopoietic progenitor cells, and T-cells was observed. Quantitative reverse transcriptase polymerase chain reaction revealed low CD79b gene expression in these cell types. Therefore, aberrant gene expression must be taken into consideration when selecting common, apparently lineage-specific self-antigens as targets for TCR-based immunotherapies.


Subject(s)
CD79 Antigens/genetics , CD79 Antigens/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/immunology , Amino Acid Sequence , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD79 Antigens/chemistry , HLA-A2 Antigen/immunology , HLA-B7 Antigen/immunology , Humans , Immunotherapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , RNA Interference , RNA, Small Interfering/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Cells, Cultured
12.
J Biol Chem ; 290(5): 2593-603, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25505266

ABSTRACT

Human leukocyte antigen (HLA) class I molecules generally present peptides (p) of 8 to 11 amino acids (aa) in length. Although an increasing number of examples with lengthy (>11 aa) peptides, presented mostly by HLA-B alleles, have been reported. Here we characterize HLA-A*02:01 restricted, in addition to the HLA-B*0702 and HLA-B*4402 restricted, lengthy peptides (>11 aa) arising from the B-cell ligandome. We analyzed a number of 15-mer peptides presented by HLA-A*02:01, and confirmed pHLA-I formation by HLA folding and thermal stability assays. Surprisingly the binding affinity and stability of the 15-mer epitopes in complex with HLA-A*02:01 were comparable with the values observed for canonical length (8 to 11 aa) HLA-A*02:01-restricted peptides. We solved the structures of two 15-mer epitopes in complex with HLA-A*02:01, within which the peptides adopted distinct super-bulged conformations. Moreover, we demonstrate that T-cells can recognize the 15-mer peptides in the context of HLA-A*02:01, indicating that these 15-mer peptides represent immunogenic ligands. Collectively, our data expand our understanding of longer epitopes in the context of HLA-I, highlighting that they are not limited to the HLA-B family, but can bind the ubiquitous HLA-A*02:01 molecule, and play an important role in T-cell immunity.


Subject(s)
HLA-A2 Antigen/chemistry , Cell Line , Crystallography, X-Ray , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Flow Cytometry , HLA-A2 Antigen/immunology , HLA-B7 Antigen/chemistry , HLA-B7 Antigen/immunology , Humans , Mass Spectrometry , Peptides , Protein Conformation
13.
Blood ; 124(23): 3490-500, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25336630

ABSTRACT

Effective T-cell therapy against cancer is dependent on the formation of long-lived, stem cell-like T cells with the ability to self-renew and differentiate into potent effector cells. Here, we investigated the in vivo existence of stem cell-like antigen-specific T cells in allogeneic stem cell transplantation (allo-SCT) patients and their ex vivo generation for additive treatment posttransplant. Early after allo-SCT, CD8+ stem cell memory T cells targeting minor histocompatibility antigens (MiHAs) expressed by recipient tumor cells were not detectable, emphasizing the need for improved additive MiHA-specific T-cell therapy. Importantly, MiHA-specific CD8+ T cells with an early CCR7+CD62L+CD45RO+CD27+CD28+CD95+ memory-like phenotype and gene signature could be expanded from naive precursors by inhibiting Akt signaling during ex vivo priming and expansion. This resulted in a MiHA-specific CD8+ T-cell population containing a high proportion of stem cell-like T cells compared with terminal differentiated effector T cells in control cultures. Importantly, these Akt-inhibited MiHA-specific CD8+ T cells showed a superior expansion capacity in vitro and in immunodeficient mice and induced a superior antitumor effect in intrafemural multiple myeloma-bearing mice. These findings provide a rationale for clinical exploitation of ex vivo-generated Akt-inhibited MiHA-specific CD8+ T cells in additive immunotherapy to prevent or treat relapse in allo-SCT patients.


Subject(s)
Benzimidazoles/therapeutic use , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/transplantation , Cytotoxicity, Immunologic/drug effects , Immunotherapy, Adoptive/methods , Quinoxalines/therapeutic use , Animals , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Combined Modality Therapy/methods , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Minor Histocompatibility Antigens/immunology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/immunology , Transplantation Conditioning/methods , Xenograft Model Antitumor Assays
14.
J Immunol ; 190(8): 3869-77, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23475216

ABSTRACT

T cell recognition of minor histocompatibility Ags (MiHA) plays an important role in the graft-versus-tumor effect of allogeneic stem cell transplantation. Selective infusion of T cells reactive for hematopoiesis-restricted MiHA presented in the context of HLA class I or II molecules may help to separate the graft-versus-tumor effects from graft-versus-host disease effects after allogeneic stem cell transplantation. Over the years, increasing numbers of MiHA have been identified by forward immunology approaches, and the relevance of these MiHA has been illustrated by correlation with clinical outcome. As the tissue distribution of MiHA affects the clinical outcome of T cell responses against these Ags, it would be beneficial to identify additional predefined MiHA that are exclusively expressed on hematopoietic cells. Therefore, several reverse immunology approaches have been explored for the prediction of MiHA. Thus far, these approaches frequently resulted in the identification of T cells directed against epitopes that are not naturally processed and presented. In this study we established a method for the identification of biologically relevant MiHA, implementing mass spectrometry-based HLA-peptidomics into a reverse immunology approach. For this purpose, HLA class I binding peptides were eluted from transformed B cells, analyzed by mass spectrometry, and matched with a database dedicated to identifying polymorphic peptides. This process resulted in a set of 40 MiHA candidates that were evaluated in multiple selection steps. The identification of LB-NISCH-1A demonstrated the technical feasibility of our approach. On the basis of these results, we present an approach that can be of value for the efficient identification of MiHA or other T cell epitopes.


Subject(s)
Epitopes, T-Lymphocyte/metabolism , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Proteomics , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , Cell Line, Transformed , Cells, Cultured , Coculture Techniques , HLA-A2 Antigen/isolation & purification , HLA-A2 Antigen/metabolism , Humans , Minor Histocompatibility Antigens/isolation & purification , Minor Histocompatibility Antigens/metabolism , Protein Binding/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
15.
Mol Cell Proteomics ; 12(7): 1829-43, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23481700

ABSTRACT

Peptides presented by human leukocyte antigen (HLA) molecules on the cell surface play a crucial role in adaptive immunology, mediating the communication between T cells and antigen presenting cells. Knowledge of these peptides is of pivotal importance in fundamental studies of T cell action and in cellular immunotherapy and transplantation. In this paper we present the in-depth identification and relative quantification of 14,500 peptide ligands constituting the HLA ligandome of B cells. This large number of identified ligands provides general insight into the presented peptide repertoire and antigen presentation. Our uniquely large set of HLA ligands allowed us to characterize in detail the peptides constituting the ligandome in terms of relative abundance, peptide length distribution, physicochemical properties, binding affinity to the HLA molecule, and presence of post-translational modifications. The presented B-lymphocyte ligandome is shown to be a rich source of information by the presence of minor histocompatibility antigens, virus-derived epitopes, and post-translationally modified HLA ligands, and it can be a good starting point for solving a wealth of specific immunological questions. These HLA ligands can form the basis for reversed immunology approaches to identify T cell epitopes based not on in silico predictions but on the bona fide eluted HLA ligandome.


Subject(s)
B-Lymphocytes/metabolism , HLA Antigens/metabolism , Peptides/metabolism , Antigen Presentation , Cell Line, Transformed , Herpesvirus 4, Human/genetics , Humans , Ligands
16.
Biol Blood Marrow Transplant ; 20(5): 655-61, 2014 May.
Article in English | MEDLINE | ID: mdl-24462981

ABSTRACT

Human cytomegalovirus (CMV) reactivation frequently occurs during the early phase of immune recovery after allogeneic hematopoietic stem cell transplantation (HSCT). Whereas the recovery of virus-specific immunity in the early phase after HSCT is extensively studied, the impact of CMV on the reconstitution and composition of the T cell compartment long-term after HSCT is unknown. We analyzed T cell reconstitution 1 to 2 years after HSCT in 131 pediatric patients. One year after HSCT, patients with early CMV reactivation (n = 46) had 3-fold higher CD8(+) T cell numbers (median, 1323 versus 424 cells/µL; P < .0001) compared with patients without CMV reactivation (n = 85). This effect, caused by a major expansion of CD8(+) effector memory (EM) and end-stage effector (EMRA) T cells, was independent of pretransplantation donor and recipient CMV serostatus and not seen after Epstein-Barr virus or adenovirus reactivations. At 1 and 2 years after HSCT, the absolute numbers of CD8(+) naive and central memory T cells, as well as CD4(+) naive, CM, EM, and EMRA T cells, did not differ between patients with or without CMV reactivation. In the second year after HSCT, a significant contraction of the initially expanded CD8(+) EM and EMRA T cell compartments was observed in patients with early CMV reactivation. In conclusion, CMV reactivation early after pediatric HSCT leaves a specific and dynamic imprint on the size and composition of the CD8(+) T cell compartment without compromising the reconstitution of CD8(+) and CD4(+) naive and central memory T cells pivotal in the response to neo and recall antigens.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/physiology , Hematopoietic Stem Cell Transplantation , Herpesvirus 4, Human/physiology , Adolescent , Adult , CD4-Positive T-Lymphocytes/pathology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/virology , Child , Child, Preschool , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/therapy , Cytomegalovirus Infections/virology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/therapy , Epstein-Barr Virus Infections/virology , Female , Hematologic Diseases/complications , Hematologic Diseases/immunology , Hematologic Diseases/therapy , Hematologic Diseases/virology , Humans , Immunologic Memory , Infant , Longitudinal Studies , Lymphocyte Count , Male , Time Factors , Transplantation, Homologous , Virus Activation
17.
Eur J Immunol ; 43(11): 3038-50, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23893393

ABSTRACT

The low frequency of antigen-specific naïve T cells has challenged numerous laboratories to develop various techniques to study the naïve T-cell repertoire. Here, we combine the generation of naïve repertoire-derived antigen-specific T-cell lines based on MHC-tetramer staining and magnetic-bead enrichment with in-depth functional assessment of the isolated T cells. Cytomegalovirus (CMV) specific T-cell lines were generated from seronegative individuals. Generated T-cell lines consisted of a variety of immunodominant CMV-epitope-specific oligoclonal T-cell populations restricted to various HLA-molecules (HLA-A1, A2, B7, B8, and B40), and the functional and structural avidity of the CMV-specific T cells was studied. Although all CMV-specific T cells were isolated based on their reactivity toward a specific peptide-MHC complex, we observed a large variation in the functional avidity of the MHC-tetramer positive T-cell populations, which correlated with the structural avidity measured by the recently developed Streptamer koff -rate assay. Our data demonstrate that MHC-tetramer staining is not always predictive for specific T-cell reactivity, and challenge the sole use of MHC-tetramers as an indication of the peripheral T-cell repertoire, independent of the analysis of functional activity or structural avidity parameters.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/immunology , Cell Line , Epitopes, T-Lymphocyte/immunology , HLA-A1 Antigen/immunology , HLA-A2 Antigen/immunology , HLA-B40 Antigen/immunology , HLA-B7 Antigen/immunology , HLA-B8 Antigen/immunology , Humans , Interferon-gamma/biosynthesis , T-Lymphocyte Subsets/immunology
18.
Cancer Gene Ther ; 31(1): 58-68, 2024 01.
Article in English | MEDLINE | ID: mdl-37945970

ABSTRACT

Antibody-mediated delivery of immunogenic epitopes to redirect virus-specific CD8+ T-cells towards cancer cells is an emerging and promising new therapeutic strategy. These so-called antibody-epitope conjugates (AECs) rely on the proteolytic release of the epitopes close to the tumor surface for presentation by HLA class I molecules to eventually redirect and activate virus-specific CD8+ T-cells towards tumor cells. We fused the immunogenic EBV-BRLF1 epitope preceded by a protease cleavage site to the C-terminus of the heavy and/or light chains of cetuximab and trastuzumab. We evaluated these AECs and found that, even though all AECs were able to redirect the EBV-specific T-cells, AECs with an epitope fused to the C-terminus of the heavy chain resulted in higher levels of T-cell activation compared to AECs with the same epitope fused to the light chain of an antibody. We observed that all AECs were depending on the presence of the antibody target, that the level of T-cell activation correlated with expression levels of the antibody target, and that our AECs could efficiently deliver the BRLF1 epitope to cancer cell lines from different origins (breast, ovarian, lung, and cervical cancer and a multiple myeloma). Moreover, in vivo, the AECs efficiently reduced tumor burden and increased the overall survival, which was prolonged even further in combination with immune checkpoint blockade. We demonstrate the potential of these genetically fused AECs to redirect the potent EBV-specific T-cells towards cancer in vitro and in vivo.


Subject(s)
Immunoconjugates , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Epitopes , Herpesvirus 4, Human/genetics , Neoplasms/therapy , Epitopes, T-Lymphocyte
19.
Blood ; 118(26): 6733-42, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-21972290

ABSTRACT

T-cell alloreactivity directed against non-self-HLA molecules has been assumed to be less peptide specific than conventional T-cell reactivity. A large variation in degree of peptide specificity has previously been reported, including single peptide specificity, polyspecificity, and peptide degeneracy. Peptide polyspecificity was illustrated using synthetic peptide-loaded target cells, but in the absence of confirmation against endogenously processed peptides this may represent low-avidity T-cell reactivity. Peptide degeneracy was concluded based on recognition of Ag-processing defective cells. In addition, because most investigated alloreactive T cells were in vitro activated and expanded, the previously determined specificities may have not been representative for alloreactivity in vivo. To study the biologically relevant peptide specificity and avidity of alloreactivity, we investigated the degree of peptide specificity of 50 different allo-HLA-reactive T-cell clones which were activated and expanded in vivo during GVHD. All but one of the alloreactive T-cell clones, including those reactive against Ag-processing defective T2 cells, recognized a single peptide allo-HLA complex, unique for each clone. Down-regulation of the expression of the recognized Ags using silencing shRNAs confirmed single peptide specificity. Based on these results, we conclude that biologically relevant alloreactivity selected during in vivo immune response is peptide specific.


Subject(s)
Graft vs Host Disease/immunology , HLA Antigens/immunology , Peptides/immunology , T-Lymphocytes/immunology , Amino Acid Sequence , Amino Acid Substitution , Cell Line, Transformed , Cells, Cultured , Chromatography, High Pressure Liquid , Gene Expression , Graft vs Host Disease/etiology , HLA Antigens/genetics , HLA-A2 Antigen/genetics , HLA-A2 Antigen/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Isoantigens/immunology , K562 Cells , Lymphocyte Activation/immunology , Mass Spectrometry , Peptides/genetics , Peptides/isolation & purification , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/metabolism
20.
J Immunol ; 187(5): 2824-33, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21821799

ABSTRACT

T cells recognizing tumor-associated Ags such as Wilms tumor protein (WT1) are thought to exert potent antitumor reactivity. However, no consistent high-avidity T cell responses have been demonstrated in vaccination studies with WT1 as target in cancer immunotherapy. The aim of this study was to investigate the possible role of negative thymic selection on the avidity and specificity of T cells directed against self-antigens. T cell clones directed against the HLA-A*0201-binding WT1(126-134) peptide were generated from both HLA-A*02-positive (self-HLA-restricted) and HLA-A*02-negative [nonself (allogeneic) HLA [allo-HLA]-restricted] individuals by direct ex vivo isolation using tetramers or after in vitro priming and selection. The functional avidity and specificity of these T cell clones was analyzed in-depth. Self-HLA-restricted WT1-specific clones only recognized WT1(126-134) with low avidities. In contrast, allo-HLA-restricted WT1 clones exhibited profound functional reactivity against a multitude of HLA-A*02-positive targets, even in the absence of exogenously loaded WT1 peptide, indicative of Ag-binding promiscuity. To characterize this potential promiscuity, reactivity of the T cell clones against 400 randomly selected HLA-A*0201-binding peptides was investigated. The self-HLA-restricted WT1-specific T cell clones only recognized the WT1 peptide. In contrast, the allo-HLA-restricted WT1-reactive clones recognized besides WT1 various other HLA-A*0201-binding peptides. In conclusion, allogeneic HLA-A*02-restricted WT1-specific T cells isolated from mismatched donors may be more tumor-reactive than their autologous counterparts but can show specific off-target promiscuity of potential clinical importance. As a result of this, administration of WT1-specific T cells generated from HLA-mismatched donors should be performed with appropriate precautions against potential off-target effects.


Subject(s)
Autoantigens/immunology , CD8-Positive T-Lymphocytes/immunology , HLA-A Antigens/immunology , Transplantation, Homologous/immunology , WT1 Proteins/immunology , Cancer Vaccines/immunology , Cell Separation , Flow Cytometry , HLA-A2 Antigen , Humans , Immunotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL