Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 175(1): 85-100.e23, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30173916

ABSTRACT

Multiple sclerosis is an autoimmune disease that is caused by the interplay of genetic, particularly the HLA-DR15 haplotype, and environmental risk factors. How these etiologic factors contribute to generating an autoreactive CD4+ T cell repertoire is not clear. Here, we demonstrate that self-reactivity, defined as "autoproliferation" of peripheral Th1 cells, is elevated in patients carrying the HLA-DR15 haplotype. Autoproliferation is mediated by memory B cells in a HLA-DR-dependent manner. Depletion of B cells in vitro and therapeutically in vivo by anti-CD20 effectively reduces T cell autoproliferation. T cell receptor deep sequencing showed that in vitro autoproliferating T cells are enriched for brain-homing T cells. Using an unbiased epitope discovery approach, we identified RASGRP2 as target autoantigen that is expressed in the brain and B cells. These findings will be instrumental to address important questions regarding pathogenic B-T cell interactions in multiple sclerosis and possibly also to develop novel therapies.


Subject(s)
B-Lymphocytes/pathology , HLA-DR Serological Subtypes/immunology , Multiple Sclerosis/immunology , Autoantigens/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/physiopathology , B-Lymphocytes/metabolism , Brain/pathology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/physiology , Guanine Nucleotide Exchange Factors/metabolism , HLA-DR Serological Subtypes/genetics , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/physiopathology , Receptors, Antigen, T-Cell , Th1 Cells/physiology
2.
Ann Neurol ; 95(6): 1112-1126, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551149

ABSTRACT

OBJECTIVE: Specific human leucocyte antigen (HLA) alleles are not only associated with higher risk to develop multiple sclerosis (MS) and other autoimmune diseases, but also with the severity of various viral and bacterial infections. Here, we analyzed the most specific biomarker for MS, that is, the polyspecific intrathecal IgG antibody production against measles, rubella, and varicella zoster virus (MRZ reaction), for possible HLA associations in MS. METHODS: We assessed MRZ reaction from 184 Swiss patients with MS and clinically isolated syndrome (CIS) and 89 Swiss non-MS/non-CIS control patients, and performed HLA sequence-based typing, to check for associations of positive MRZ reaction with the most prevalent HLA alleles. We used a cohort of 176 Swedish MS/CIS patients to replicate significant findings. RESULTS: Whereas positive MRZ reaction showed a prevalence of 38.0% in MS/CIS patients, it was highly specific (97.7%) for MS/CIS. We identified HLA-DRB1*15:01 and other tightly linked alleles of the HLA-DR15 haplotype as the strongest HLA-encoded risk factors for a positive MRZ reaction in Swiss MS/CIS (odds ratio [OR], 3.90, 95% confidence interval [CI] 2.05-7.46, padjusted = 0.0004) and replicated these findings in Swedish MS/CIS patients (OR 2.18, 95%-CI 1.16-4.02, padjusted = 0.028). In addition, female MS/CIS patients had a significantly higher probability for a positive MRZ reaction than male patients in both cohorts combined (padjusted <0.005). INTERPRETATION: HLA-DRB1*15:01, the strongest genetic risk factor for MS, and female sex, 1 of the most prominent demographic risk factors for developing MS, predispose in MS/CIS patients for a positive MRZ reaction, the most specific CSF biomarker for MS. ANN NEUROL 2024;95:1112-1126.


Subject(s)
Immunoglobulin G , Multiple Sclerosis , Humans , Female , Male , Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Multiple Sclerosis/cerebrospinal fluid , Immunoglobulin G/blood , Adult , Middle Aged , Herpesvirus 3, Human/immunology , Herpesvirus 3, Human/genetics , HLA-DRB1 Chains/genetics , Sweden/epidemiology , Cohort Studies , Young Adult , Rubella virus/genetics , Rubella virus/immunology , HLA Antigens/genetics , Antibodies, Viral/cerebrospinal fluid , Antibodies, Viral/blood , Alleles , Switzerland/epidemiology
3.
Brain ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630618

ABSTRACT

Epstein-Barr virus (EBV) infection has been advocated as a prerequisite for developing multiple sclerosis (MS) and possibly the propagation of the disease. However, the precise mechanisms for such influences are still unclear. A large-scale study investigating the host genetics of EBV serology and related clinical manifestations, such as infectious mononucleosis (IM), may help us better understand the role of EBV in MS pathogenesis. This study evaluates the host genetic factors that influence serological response against EBV and history of IM and cross-evaluates them with MS risk and genetic susceptibility in the Swedish population. Plasma IgG antibody levels against EBV nuclear antigen-1 (EBNA-1, truncated=aa[325-641], peptide=aa[385-420]) and viral capsid antigen p18 (VCAp18) were measured using bead-based multiplex serology for 8744 MS cases and 7229 population-matched controls. The MS risk association for high/low EBV antibody levels and history of IM was compared to relevant clinical measures along with sex, age at sampling, and associated HLA allele variants. Genome-wide and HLA allele association analyses were also performed to identify genetic risk factors for EBV antibody response and IM history. Higher antibody levels against VCAp18 (OR=1.74, 95% CI=1.60-1.88) and EBNA-1, particularly the peptide (OR=3.13, 95% CI=2.93-3.35), were associated with an increased risk for MS. The risk increased with higher anti-EBNA-1 IgG levels up to twelve times the reference risk. We also identified several independent HLA haplotypes associated with EBV serology overlapping with known MS risk alleles (e.g., DRB1*15:01). Although there were several candidates, no variants outside the HLA region reached genome-wide significance. Cumulative HLA risk for anti-EBNA-1 IgG levels, particularly the peptide fragment, was strongly associated with MS. In contrast, the genetic risk for high anti-VCAp18 IgG levels was not as strongly associated with MS risk. IM history was not associated with class II HLA genes but negatively associated with A*02:01, which is protective against MS. Our findings emphasize that the risk association between anti-EBNA-1 IgG levels and MS may be partly due to overlapping HLA associations. Additionally, the increasing MS risk with increasing anti-EBNA-1 levels would be consistent with a pathogenic role of the EBNA-1 immune response, perhaps through molecular mimicry. Given that high anti-EBNA-1 antibodies may reflect a poorly controlled T-cell defense against the virus, our findings would be consistent with DRB1*15:01 being a poor class II antigen in the immune defense against EBV. Lastly, the difference in genetic control of IM supports the independent roles of EBNA-1 and IM in MS susceptibility.

4.
Clin Immunol ; 258: 109870, 2024 01.
Article in English | MEDLINE | ID: mdl-38101497

ABSTRACT

Recent studies have highlighted the important role of B cells in the pathogenesis of multiple sclerosis (MS). B cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) play a major role in B cell survival and homeostasis. Here, we studied the association of BAFF and APRIL with B cell immune markers in MS and following B cell depletion and repopulation. We found that BAFF but not APRIL was significantly higher in plasma in untreated MS compared to controls. BAFF increased after rituximab treatment and decreased again during repopulation displaying an inverse correlation with B cell numbers, and more specifically switched memory B cell numbers. Cerebrospinal fluid BAFF inversely correlated with IgG index. BAFF displayed an inverse association to anti-EBV-CA antibodies. In summary, our study identified immune cells and factors that might regulate or be regulated by BAFF and APRIL levels in MS, and during B cell depletion and repopulation.


Subject(s)
Multiple Sclerosis , Humans , B-Cell Activating Factor , Tumor Necrosis Factor Ligand Superfamily Member 13 , Rituximab/therapeutic use , B-Lymphocytes/pathology , Interleukin-4
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879606

ABSTRACT

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.


Subject(s)
Multiple Sclerosis/genetics , Multiple Sclerosis/immunology , Transcriptome/genetics , Adult , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Leukocytes/metabolism , Leukocytes, Mononuclear/metabolism , Male , MicroRNAs/blood , MicroRNAs/cerebrospinal fluid , MicroRNAs/genetics , Middle Aged , Multiple Sclerosis/metabolism , Multiple Sclerosis, Chronic Progressive/genetics , Multiple Sclerosis, Relapsing-Remitting/genetics , Neoplasm Recurrence, Local/metabolism , RNA, Small Untranslated/blood , RNA, Small Untranslated/cerebrospinal fluid , RNA, Small Untranslated/genetics
6.
J Neuroinflammation ; 20(1): 189, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592277

ABSTRACT

A sports-related concussion (SRC) is often caused by rapid head rotation at impact, leading to shearing and stretching of axons in the white matter and initiation of secondary inflammatory processes that may exacerbate the initial injury. We hypothesized that athletes with persistent post-concussive symptoms (PPCS) display signs of ongoing neuroinflammation, as reflected by altered profiles of cerebrospinal fluid (CSF) biomarkers, in turn relating to symptom severity. We recruited athletes with PPCS preventing sports participation as well as limiting work, school and/or social activities for ≥ 6 months for symptom rating using the Sport Concussion Assessment Tool, version 5 (SCAT-5) and for cognitive assessment using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Following a spinal tap, we analysed 27 CSF inflammatory biomarkers (pro-inflammatory chemokines and cytokine panels) by a multiplex immunoassay using antibodies as electrochemiluminescent labels to quantify concentrations in PPCS athletes, and in healthy age- and sex-matched controls exercising ≤ 2 times/week at low-to-moderate intensity. Thirty-six subjects were included, 24 athletes with PPCS and 12 controls. The SRC athletes had sustained a median of five concussions, the most recent at a median of 17 months prior to the investigation. CSF cytokines and chemokines levels were significantly increased in eight (IL-2, TNF-α, IL-15, TNF-ß, VEGF, Eotaxin, IP-10, and TARC), significantly decreased in one (Eotaxin-3), and unaltered in 16 in SRC athletes when compared to controls, and two were un-detectable. The SRC athletes reported many and severe post-concussive symptoms on SCAT5, and 10 out of 24 athletes performed in the impaired range (Z < - 1.5) on cognitive testing. Individual biomarker concentrations did not strongly correlate with symptom rating or cognitive function. Limitations include evaluation at a single post-injury time point in relatively small cohorts, and no control group of concussed athletes without persisting symptoms was included. Based on CSF inflammatory marker profiling we find signs of ongoing neuroinflammation persisting months to years after the last SRC in athletes with persistent post-concussive symptoms. Since an ongoing inflammatory response may exacerbate the brain injury these results encourage studies of treatments targeting the post-injury inflammatory response in sports-related concussion.


Subject(s)
Brain Concussion , Post-Concussion Syndrome , Humans , Post-Concussion Syndrome/diagnosis , Neuroinflammatory Diseases , Brain Concussion/complications , Athletes , Cytokines , Biomarkers
7.
J Neuroinflammation ; 20(1): 98, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37106402

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a neuroinflammatory disease in which pregnancy leads to a temporary amelioration in disease activity as indicated by the profound decrease in relapses rate during the 3rd trimester of pregnancy. CD4+ and CD8+ T cells are implicated in MS pathogenesis as being key regulators of inflammation and brain lesion formation. Although Tcells are prime candidates for the pregnancy-associated improvement of MS, the precise mechanisms are yet unclear, and in particular, a deep characterization of the epigenetic and transcriptomic events that occur in peripheral T cells during pregnancy in MS is lacking. METHODS: Women with MS and healthy controls were longitudinally sampled before, during (1st, 2nd and 3rd trimesters) and after pregnancy. DNA methylation array and RNA sequencing were performed on paired CD4+ and CD8+ T cells samples. Differential analysis and network-based approaches were used to analyze the global dynamics of epigenetic and transcriptomic changes. RESULTS: Both DNA methylation and RNA sequencing revealed a prominent regulation, mostly peaking in the 3rd trimester and reversing post-partum, thus mirroring the clinical course with improvement followed by a worsening in disease activity. This rebound pattern was found to represent a general adaptation of the maternal immune system, with only minor differences between MS and controls. By using a network-based approach, we highlighted several genes at the core of this pregnancy-induced regulation, which were found to be enriched for genes and pathways previously reported to be involved in MS. Moreover, these pathways were enriched for in vitro stimulated genes and pregnancy hormones targets. CONCLUSION: This study represents, to our knowledge, the first in-depth investigation of the methylation and expression changes in peripheral CD4+ and CD8+ T cells during pregnancy in MS. Our findings indicate that pregnancy induces profound changes in peripheral T cells, in both MS and healthy controls, which are associated with the modulation of inflammation and MS activity.


Subject(s)
Multiple Sclerosis , Pregnancy , Humans , Female , Multiple Sclerosis/pathology , CD8-Positive T-Lymphocytes , Transcriptome , CD4-Positive T-Lymphocytes , Epigenesis, Genetic , Inflammation/metabolism
8.
Eur J Neurol ; 30(12): 3789-3798, 2023 12.
Article in English | MEDLINE | ID: mdl-37522464

ABSTRACT

BACKGROUND AND PURPOSE: Hybrid immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develops from a combination of natural infection and vaccine-generated immunity. Multiple sclerosis (MS) disease-modifying therapies (DMTs) have the potential to impact humoral and cellular immunity induced by SARS-CoV-2 vaccination and infection. The aims were to compare antibody and T-cell responses after SARS-CoV-2 mRNA vaccination in persons with MS (pwMS) treated with different DMTs and to assess differences between naïvely vaccinated pwMS and pwMS with hybrid immunity vaccinated following a previous SARS-CoV-2 infection. METHODS: Antibody and T-cell responses were determined in pwMS at baseline and 4 and 12 weeks after the second dose of SARS-CoV-2 vaccination in 143 pwMS with or without previous SARS-CoV-2 infection and 40 healthy controls (HCs). The MS cohort comprised natalizumab (n = 22), dimethylfumarate (n = 23), fingolimod (n = 38), cladribine (n = 30), alemtuzumab (n = 17) and teriflunomide (n = 13) treated pwMS. Immunoglobulin G antibody responses to SARS-CoV-2 antigens were measured using a multiplex bead assay and FluoroSpot was used to assess T-cell responses (interferon γ and interleukin 13). RESULTS: Humoral and T-cell responses to vaccination were comparable between naïvely vaccinated HCs and pwMS treated with natalizumab, dimethylfumarate, cladribine, alemtuzumab and teriflunomide, but were suppressed in fingolimod-treated pwMS. Both fingolimod-treated pwMS and HCs vaccinated following a previous SARS-CoV-2 infection had higher antibody levels 4 weeks after vaccination compared to naïvely vaccinated individuals. Antibody and interferon γ levels 12 weeks after vaccination were positively correlated with time from last treatment course of cladribine. CONCLUSION: These findings are of relevance for infection risk mitigation and for vaccination strategies amongst pwMS undergoing DMT.


Subject(s)
COVID-19 , Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Cladribine , Natalizumab , COVID-19 Vaccines/therapeutic use , SARS-CoV-2 , Interferon-gamma , Alemtuzumab , Dimethyl Fumarate , Fingolimod Hydrochloride , COVID-19/prevention & control , Vaccination , Antibodies , Adaptive Immunity , Antibodies, Viral
9.
Mol Cell Proteomics ; 20: 100157, 2021.
Article in English | MEDLINE | ID: mdl-34597789

ABSTRACT

Proteomics studies are important for the discovery of new biomarkers as clinical tools for diagnosis and disease monitoring. However, preanalytical variations caused by differences in sample handling protocol pose challenges for assessing biomarker reliability and comparability between studies. The purpose of this study was to examine the effects of delayed centrifuging on measured protein levels in plasma and cerebrospinal fluid (CSF). Blood from healthy individuals and patients with multiple sclerosis along with CSF from patients with suspected neurological disorders were left at room temperature for different periods (blood: 1, 24, 48, 72 h; CSF: 1 and 6 h) prior to centrifuging. Ninety-one inflammation-related proteins were analyzed using a proximity extension assay, a high-sensitivity multiplex immunoassay. Additional metabolic and neurology-related markers were also investigated in CSF. In summary, many proteins, particularly in plasma, had increased levels with longer delays in processing likely due in part to intracellular leakage. Levels of caspase 8, interleukin 8, interleukin 18, sirtuin 2, and sulfotransferase 1A1 increased 2-fold to 10-fold in plasma after 24 h at room temperature. Similarly, levels of cathepsin H, ectonucleoside triphosphate diphosphohydrolase 5, and WW domain containing E3 ubiquitin protein ligase 2 differentiated in CSF with <6 h delay in processing. However, the rate of change for many proteins was relatively consistent; therefore, we were able to characterize biomarkers for detecting sample handling variability. Our findings highlight the importance of timely and consistent sample collection and the need for increased awareness of protein susceptibility to sample handling bias. In addition, suggested biomarkers may be used in certain situations to detect and correct for preanalytical variation in future studies.


Subject(s)
Blood Proteins/analysis , Cerebrospinal Fluid Proteins/analysis , Proteomics/methods , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Centrifugation , Humans , Inflammation/blood , Inflammation/cerebrospinal fluid , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Specimen Handling , Time Factors
10.
Proc Natl Acad Sci U S A ; 117(23): 12952-12960, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32457139

ABSTRACT

Effective biomarkers for multiple sclerosis diagnosis, assessment of prognosis, and treatment responses, in particular those measurable in blood, are largely lacking. We have investigated a broad set of protein biomarkers in cerebrospinal fluid (CSF) and plasma using a highly sensitive proteomic immunoassay. Cases from two independent cohorts were compared with healthy controls and patients with other neurological diseases. We identified and replicated 10 cerebrospinal fluid proteins including IL-12B, CD5, MIP-1a, and CXCL9 which had a combined diagnostic efficacy similar to immunoglobulin G (IgG) index and neurofilament light chain (area under the curve [AUC] = 0.95). Two plasma proteins, OSM and HGF, were also associated with multiple sclerosis in comparison to healthy controls. Sensitivity and specificity of combined CSF and plasma markers for multiple sclerosis were 85.7% and 73.5%, respectively. In the discovery cohort, eotaxin-1 (CCL11) was associated with disease duration particularly in patients who had secondary progressive disease (PCSF < 4 × 10-5, Pplasma < 4 × 10-5), and plasma CCL20 was associated with disease severity (P = 4 × 10-5), although both require further validation. Treatment with natalizumab and fingolimod showed different compartmental changes in protein levels of CSF and peripheral blood, respectively, including many disease-associated markers (e.g., IL12B, CD5) showing potential application for both diagnosing disease and monitoring treatment efficacy. We report a number of multiple sclerosis biomarkers in CSF and plasma for early disease detection and potential indicators for disease activity. Of particular importance is the set of markers discovered in blood, where validated biomarkers are lacking.


Subject(s)
Chemokine CCL11/analysis , Chemokine CCL20/blood , Inflammation/immunology , Multiple Sclerosis/diagnosis , Adult , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Case-Control Studies , Chemokine CCL11/immunology , Chemokine CCL20/immunology , Cohort Studies , Female , Humans , Inflammation/blood , Inflammation/cerebrospinal fluid , Male , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/immunology , Prognosis , Proteomics , Reproducibility of Results , Severity of Illness Index , Young Adult
11.
Eur J Neurol ; 29(11): 3317-3328, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35808856

ABSTRACT

BACKGROUND AND PURPOSE: Recent findings document a blunted humoral response to SARS-CoV-2 vaccination in patients on anti-CD20 treatment. Although most patients develop a cellular response, it is still important to identify predictors of seroconversion to optimize vaccine responses. METHODS: We determined antibody responses after SARS-CoV-2 vaccination in a real-world cohort of multiple sclerosis patients (n = 94) treated with anti-CD20, mainly rituximab, with variable treatment duration (median = 2.9, range = 0.4-9.6 years) and time from last anti-CD20 infusion to vaccination (median = 190, range = 60-1032 days). RESULTS: We find that presence of B cells and/or rituximab in blood predict seroconversion better than time since last infusion. Using multiple logistic regression, presence of >0.5% B cells increased probability of seroconversion with an odds ratio (OR) of 5.0 (95% confidence interval [CI] = 1.0-28.1, p = 0.055), whereas the corresponding OR for ≥6 months since last infusion was 1.45 (95% CI = 0.20-10.15, p = 0.705). In contrast, detectable rituximab levels were negatively associated with seroconversion (OR = 0.05, 95% CI = 0.002-0.392, p = 0.012). Furthermore, naïve and memory IgG+ B cells correlated with antibody levels. Although retreatment with rituximab at 4 weeks or more after booster depleted spike-specific B cells, it did not noticeably affect the rate of decline in antibody titers. Interferon-γ and/or interleukin-13 T-cell responses to the spike S1 domain were observed in most patients, but with no correlation to spike antibody levels. CONCLUSIONS: These findings are relevant for providing individualized guidance to patients and planning of vaccination schemes, in turn optimizing benefit-risk with anti-CD20.


Subject(s)
B-Lymphocytes , COVID-19 Vaccines , COVID-19 , Multiple Sclerosis , Antibodies, Viral , B-Lymphocytes/cytology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Humans , Immunoglobulin G , Interferon-gamma , Interleukin-13 , Multiple Sclerosis/drug therapy , Rituximab/pharmacokinetics , Rituximab/therapeutic use , SARS-CoV-2 , Vaccination , Vaccine Efficacy
12.
J Immunol ; 203(4): 888-898, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31292217

ABSTRACT

Genome-wide association studies have mapped the specific sequence variants that predispose for multiple sclerosis (MS). The pathogenic mechanisms that underlie these associations could be leveraged to develop safer and more effective MS treatments but are still poorly understood. In this article, we study the genetic risk variant rs17066096 and the candidate gene that encodes IL-22 binding protein (IL-22BP), an antagonist molecule of the cytokine IL-22. We show that monocytes from carriers of the risk genotype of rs17066096 express more IL-22BP in vitro and cerebrospinal fluid levels of IL-22BP correlate with MS lesion load on magnetic resonance imaging. We confirm the pathogenicity of IL-22BP in both rat and mouse models of MS and go on to suggest a pathogenic mechanism involving lack of IL-22-mediated inhibition of T cell-derived IFN-γ expression. Our results demonstrate a pathogenic role of IL-22BP in three species with a potential mechanism of action involving T cell polarization, suggesting a therapeutic potential of IL-22 in the context of MS.


Subject(s)
Genetic Predisposition to Disease/genetics , Multiple Sclerosis/genetics , Receptors, Interleukin/genetics , Animals , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Genotype , Humans , Lymphocyte Activation/immunology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Polymorphism, Single Nucleotide , Rats , T-Lymphocytes/immunology
13.
Hum Mol Genet ; 27(5): 912-928, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29325110

ABSTRACT

Despite advancements in genetic studies, it is difficult to understand and characterize the functional relevance of disease-associated genetic variants, especially in the context of a complex multifactorial disease such as multiple sclerosis (MS). As a large proportion of expression quantitative trait loci (eQTLs) are context-specific, we performed RNA-Seq in peripheral blood mononuclear cells from MS patients (n = 145) to identify eQTLs in regions centered on 109 MS risk single nucleotide polymorphisms and 7 associated human leukocyte antigen variants. We identified 77 statistically significant eQTL associations, including pseudogenes and non-coding RNAs. Thirty-eight out of 40 testable eQTL effects were colocalized with the disease association signal. As many eQTLs are tissue specific, we aimed to detail their significance in different cell types. Approximately 70% of the eQTLs were replicated and characterized in at least one major peripheral blood mononuclear cell-derived cell type. Furthermore, 40% of eQTLs were found to be more pronounced in MS patients compared with non-inflammatory neurological diseases patients. In addition, we found two single nucleotide polymorphisms to be significantly associated with the proportions of three different cell types. Mapping to enhancer histone marks and predicted transcription factor binding sites added additional functional evidence for eight eQTL regions. As an example, we found that rs71624119, shared with three other autoimmune diseases and located in a primed enhancer (H3K4me1) with potential binding for STAT transcription factors, significantly associates with ANKRD55 expression. This study provides many novel and validated targets for future functional characterization of MS and other diseases.


Subject(s)
Multiple Sclerosis/genetics , Quantitative Trait Loci , Cohort Studies , Gene Expression Regulation , Genetic Predisposition to Disease , HLA Antigens/genetics , Humans , Interferon-gamma/pharmacology , Leukocytes, Mononuclear/physiology , Linkage Disequilibrium , Lipopolysaccharides/pharmacology , Monocytes/drug effects , Monocytes/metabolism , Polymorphism, Single Nucleotide , Reproducibility of Results
14.
Eur J Immunol ; 49(2): 313-322, 2019 02.
Article in English | MEDLINE | ID: mdl-30307034

ABSTRACT

Systemic autoimmune diseases are characterized by the overexpression of type I IFN stimulated genes, and accumulating evidence indicate a role for type I IFNs in these diseases. However, the underlying mechanisms for this are still poorly understood. To explore the role of type I IFN regulated miRNAs in systemic autoimmune disease, we characterized cellular expression of miRNAs during both acute and chronic type I IFN responses. We identified a T cell-specific reduction of miR-31-5p levels, both after intramuscular injection of IFNß and in patients with Sjögren's syndrome (SjS). To interrogate the role of miR-31-51p in T cells we transfected human CD4+ T cells with a miR-31-5p inhibitor and performed metabolic measurements. This identified an increase in basal levels of glucose metabolism after inhibition of miR-31-5p. Furthermore, treatment with IFN-α also increased the basal levels of human CD4+ T-cell metabolism. In all, our results suggest that reduced levels of miR-31-5p in T cells of SjS patients support autoimmune T-cell responses during chronic type I IFN exposure.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Energy Metabolism/immunology , MicroRNAs/immunology , Sjogren's Syndrome/immunology , CD4-Positive T-Lymphocytes/pathology , Energy Metabolism/drug effects , Female , Humans , Interferon-alpha/immunology , Interferon-alpha/pharmacology , Interferon-beta/immunology , Interferon-beta/pharmacology , Male , Sjogren's Syndrome/pathology
15.
J Autoimmun ; 102: 38-49, 2019 08.
Article in English | MEDLINE | ID: mdl-31054941

ABSTRACT

Autoreactive CD4+ T-cells are believed to be a main driver of multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein (MOG) is considered an autoantigen, yet doubted in recent years. The reason is in part due to low frequency and titers of MOG autoantibodies and the challenge to detect MOG-specific T-cells. In this study we aimed to analyze T-cell reactivity and frequency utilizing a novel method for detection of antigen-specific T-cells with bead-bound MOG as stimulant. Peripheral blood mononuclear cells (PBMCs) from natalizumab treated persons with MS (n = 52) and healthy controls (HCs) (n = 24) were analyzed by IFNγ/IL-22/IL-17A FluoroSpot. A higher number of IFNγ (P = 0.001), IL-22 (P = 0.003), IL-17A (P < 0.0001) as well as double and triple cytokine producing MOG-specific T-cells were detected in persons with MS compared to HCs. Of the patients, 46.2-59.6% displayed MOG-reactivity. Depletion of CD4+ T-cells or monocytes or blocking HLA-DR completely eliminated the MOG specific response. Anti-MOG antibodies did not correlate with T-cell MOG-responses. In conclusion, we present a sensitive method to detect circulating autoreactive CD4+ T-cells producing IFNγ, IL-22 or IL-17A using MOG as a model antigen. Further, we demonstrate that MOG-specific T-cells are present in approximately half of persons with MS.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interferon-gamma/biosynthesis , Interleukin-17/biosynthesis , Interleukins/biosynthesis , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Adolescent , Adult , Autoantibodies/blood , Autoantibodies/immunology , Autoantigens/immunology , Female , HLA-DR Antigens/metabolism , Humans , Interferon-gamma/immunology , Interleukin-17/immunology , Interleukins/immunology , Male , Middle Aged , Multiple Sclerosis/drug therapy , Myelin-Oligodendrocyte Glycoprotein/genetics , Natalizumab/therapeutic use , Young Adult , Interleukin-22
16.
Proc Natl Acad Sci U S A ; 113(28): 7864-9, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27325759

ABSTRACT

Oligoclonal Ig bands (OCBs) of the cerebrospinal fluid are a hallmark of multiple sclerosis (MS), a disabling inflammatory disease of the central nervous system (CNS). OCBs are locally produced by clonally expanded antigen-experienced B cells and therefore are believed to hold an important clue to the pathogenesis. However, their target antigens have remained unknown, mainly because it was thus far not possible to isolate distinct OCBs against a background of polyclonal antibodies. To overcome this obstacle, we copurified disulfide-linked Ig heavy and light chains from distinct OCBs for concurrent analysis by mass spectrometry and aligned patient-specific peptides to corresponding transcriptome databases. This method revealed the full-length sequences of matching chains from distinct OCBs, allowing for antigen searches using recombinant OCB antibodies. As validation, we demonstrate that an OCB antibody from a patient with an infectious CNS disorder, neuroborreliosis, recognized a Borrelia protein. Next, we produced six recombinant antibodies from four MS patients and identified three different autoantigens. All of them are conformational epitopes of ubiquitous intracellular proteins not specific to brain tissue. Our findings indicate that the B-cell response in MS is heterogeneous and partly directed against intracellular autoantigens released during tissue destruction. In addition to helping elucidate the role of B cells in MS, our approach allows the identification of target antigens of OCB antibodies in other neuroinflammatory diseases and the production of therapeutic antibodies in infectious CNS diseases.


Subject(s)
Autoantigens/immunology , Multiple Sclerosis/immunology , Oligoclonal Bands/immunology , Borrelia/immunology , HEK293 Cells , Humans , Lyme Neuroborreliosis/immunology
17.
Proc Natl Acad Sci U S A ; 113(8): 2188-93, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26862169

ABSTRACT

Multiple sclerosis (MS) is the most common chronic inflammatory disease of the central nervous system and also is regarded as an autoimmune condition. However, the antigenic targets of the autoimmune response in MS have not yet been deciphered. In an effort to mine the autoantibody repertoire within MS, we profiled 2,169 plasma samples from MS cases and population-based controls using bead arrays built with 384 human protein fragments selected from an initial screening with 11,520 antigens. Our data revealed prominently increased autoantibody reactivity against the chloride-channel protein anoctamin 2 (ANO2) in MS cases compared with controls. This finding was corroborated in independent assays with alternative protein constructs and by epitope mapping with peptides covering the identified region of ANO2. Additionally, we found a strong interaction between the presence of ANO2 autoantibodies and the HLA complex MS-associated DRB1*15 allele, reinforcing a potential role for ANO2 autoreactivity in MS etiopathogenesis. Furthermore, immunofluorescence analysis in human MS brain tissue showed ANO2 expression as small cellular aggregates near and inside MS lesions. Thus this study represents one of the largest efforts to characterize the autoantibody repertoire within MS. The findings presented here demonstrate that an ANO2 autoimmune subphenotype may exist in MS and lay the groundwork for further studies focusing on the pathogenic role of ANO2 autoantibodies in MS.


Subject(s)
Autoantibodies/blood , Chloride Channels/immunology , Membrane Proteins/immunology , Multiple Sclerosis/immunology , Adolescent , Adult , Aged , Anoctamins , Autoantigens/blood , Autoantigens/immunology , Autoantigens/metabolism , Brain/immunology , Brain/metabolism , Case-Control Studies , Chloride Channels/blood , Chloride Channels/metabolism , Epitope Mapping , Female , HLA-DRB1 Chains/genetics , Humans , Immunohistochemistry , Male , Membrane Proteins/blood , Membrane Proteins/metabolism , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/genetics , Peptide Fragments/blood , Peptide Fragments/immunology , Young Adult
18.
Mult Scler ; 24(8): 1046-1054, 2018 07.
Article in English | MEDLINE | ID: mdl-28627962

ABSTRACT

BACKGROUND: Neurofilament light chain (NFL) is a cerebrospinal fluid (CSF) marker of neuroaxonal damage in multiple sclerosis (MS). OBJECTIVE: To determine the correlation of NFL in CSF and serum/plasma, and in plasma after switching from injectable MS therapies to fingolimod. METHODS: A first cohort consisted of MS patients ( n = 39) and neurological disease controls ( n = 27) where CSF and plasma/serum had been collected for diagnostic purposes. A second cohort ( n = 243) consisted of patients from a post-marketing study of fingolimod. NFL was determined with Single Molecule Array (Simoa™) technology (detection threshold 1.95 pg/mL). RESULTS: Mean NFL pg/mL (standard deviation ( SD)) was 341 (267) and 1475 (2358) in CSF and 8.2 (3.58) and 17.0 (16.94) in serum from controls and MS, respectively. CSF/serum and plasma/serum levels were highly correlated ( n = 66, rho = 0.672, p < 0.0001 and n = 16, rho = 0.684, p = 0.009, respectively). In patients starting fingolimod ( n = 243), mean NFL pg/mL ( SD) in plasma was reduced between baseline (20.4 (10.7)) and at 12 months (13.5 (7.3), p < 3 × 10-6), and levels remained stable at 24 months (13.2 (6.2)). CONCLUSION: NFL in serum and CSF are highly correlated and plasma NFL levels decrease after switching to highly effective MS therapy. Blood NFL measurement can be considered as a biomarker for MS therapy response.


Subject(s)
Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/blood , Multiple Sclerosis/drug therapy , Neurofilament Proteins/blood , Adult , Biomarkers/blood , Female , Humans , Male , Middle Aged , Multiple Sclerosis/pathology , Young Adult
19.
J Neurochem ; 141(2): 296-304, 2017 04.
Article in English | MEDLINE | ID: mdl-27787906

ABSTRACT

Cerebrospinal fluid (CSF) biomarkers can reflect different aspects of the pathophysiology of relapsing-remitting multiple sclerosis (RRMS). Understanding the impact of different disease modifying therapies on the CSF biomarker profile may increase their implementation in clinical practice and their appropriateness for monitoring treatment efficacy. This study investigated the influence of first-line (interferon beta) and second-line (natalizumab) therapies on seven CSF biomarkers in RRMS and their correlation with clinical and radiological outcomes. We included 59 RRMS patients and 39 healthy controls. The concentrations of C-X-C motif chemokine 13 (CXCL13), C-C motif chemokine ligand 2 (CCL2), chitinase-3-like protein 1 (CHI3L1), glial fibrillary acidic protein, neurofilament light protein (NFL), and neurogranin were determined by ELISA, and chitotriosidase (CHIT1) was analyzed by spectrofluorometry. RRMS patients had higher levels of NFL, CXCL13, CHI3L1, and CHIT1 than controls (p < 0.001). Subgroup analysis revealed higher NFL, CXCL13 and CHIT1 levels in patients treated with first-line therapy compared to second-line therapy (p = 0.008, p = 0.001 and p = 0.026, respectively). NFL and CHIT1 levels correlated with relapse status, and NFL and CXCL13 levels correlated with the formation of new magnetic resonance imaging lesions. Furthermore, we found an association between inflammatory and degenerative biomarkers. The results indicate that CSF levels of NFL, CXCL13, CHI3L1, and CHIT1 correlate with the clinical and/or radiological disease activity, providing additional dimensions in the assessment of treatment efficacy.


Subject(s)
Disease Progression , Multiple Sclerosis, Relapsing-Remitting/cerebrospinal fluid , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Natalizumab/therapeutic use , Adolescent , Adult , Biomarkers/cerebrospinal fluid , Chemokine CXCL13/cerebrospinal fluid , Female , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Humans , Immunologic Factors/therapeutic use , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Neurofilament Proteins/cerebrospinal fluid , Treatment Outcome , Young Adult
20.
Mult Scler ; 23(1): 62-71, 2017 01.
Article in English | MEDLINE | ID: mdl-27003946

ABSTRACT

BACKGROUND: The disease-modifying therapies (DMTs) in relapsing-remitting multiple sclerosis (RRMS) vary in their mode of action and when therapies are changed, the consequences on inflammatory and degenerative processes are largely unknown. OBJECTIVE: We investigated the effect of switching from other DMTs to fingolimod on cerebrospinal fluid (CSF) biomarkers. METHODS: 43 RRMS patients were followed up after 4-12 months of fingolimod treatment. Concentrations of C-X-C motif chemokine 13 (CXCL13), chemokine (C-C motif) ligand 2 (CCL2), chitinase-3-like protein 1 (CHI3L1), glial fibrillary acidic protein (GFAP), neurofilament light protein (NFL), and neurogranin (NGRN) were analyzed by enzyme-linked immunosorbent assay (ELISA), while chitotriosidase (CHIT1) was analyzed by spectrofluorometry. RESULTS: The levels of NFL, CXCL13, and CHI3L1 decreased ( p < 0.05) after fingolimod treatment. Subgroup analysis revealed a reduction in NFL ( p < 0.001), CXCL13 ( p = 0.001), CHI3L1 ( p < 0.001), and CHIT1 ( p = 0.002) in patients previously treated with first-line therapies. In contrast, the levels of all analyzed biomarkers were essentially unchanged in patients switching from natalizumab. CONCLUSION: We found reduced inflammatory activity (CXCL13, CHI3L1, and CHIT1) and reduced axonal damage (NFL) in patients switching from first-line DMTs to fingolimod. Biomarker levels in patients switching from natalizumab indicate similar effects on inflammatory and degenerative processes. The CSF biomarkers provide an additional measure of treatment efficacy.


Subject(s)
Fingolimod Hydrochloride/cerebrospinal fluid , Multiple Sclerosis/cerebrospinal fluid , Adult , Biomarkers/cerebrospinal fluid , Chemokine CXCL13/cerebrospinal fluid , Disease Progression , Enzyme-Linked Immunosorbent Assay/methods , Female , Fingolimod Hydrochloride/therapeutic use , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Humans , Inflammation/cerebrospinal fluid , Male , Middle Aged , Multiple Sclerosis/drug therapy , Neurofilament Proteins/cerebrospinal fluid , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL