Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Commun ; 13(1): 4814, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35973991

ABSTRACT

How the glioma immune microenvironment fosters tumorigenesis remains incompletely defined. Here, we use single-cell RNA-sequencing and multiplexed tissue-imaging to characterize the composition, spatial organization, and clinical significance of extracellular purinergic signaling in glioma. We show that microglia are the predominant source of CD39, while tumor cells principally express CD73. In glioblastoma, CD73 is associated with EGFR amplification, astrocyte-like differentiation, and increased adenosine, and is linked to hypoxia. Glioblastomas enriched for CD73 exhibit inflammatory microenvironments, suggesting that purinergic signaling regulates immune adaptation. Spatially-resolved single-cell analyses demonstrate a strong spatial correlation between tumor-CD73 and microglial-CD39, with proximity associated with poor outcomes. Similar spatial organization is present in pediatric high-grade gliomas including H3K27M-mutant diffuse midline glioma. These data reveal that purinergic signaling in gliomas is shaped by genotype, lineage, and functional state, and that core enzymes expressed by tumor and myeloid cells are organized to promote adenosine-rich microenvironments potentially amenable to therapeutic targeting.


Subject(s)
Glioblastoma , Glioma , 5'-Nucleotidase/genetics , Adenosine , Child , Glioblastoma/genetics , Humans , Single-Cell Analysis , Spatial Analysis , Tumor Microenvironment
2.
Nat Commun ; 13(1): 604, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105861

ABSTRACT

The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.


Subject(s)
Glioma/genetics , Mutation , Oncogenes/genetics , Protein Phosphatase 2C/genetics , Adolescent , Adult , Animals , Brain Stem Neoplasms/genetics , Carcinogenesis/genetics , Cell Cycle , Child , Child, Preschool , DNA Damage , Disease Models, Animal , Female , HEK293 Cells , Humans , Infant , Male , Mice , Proto-Oncogene Proteins c-mdm2 , Transcriptome , Tumor Suppressor Protein p53/genetics , Young Adult
3.
Nat Cancer ; 3(8): 994-1011, 2022 08.
Article in English | MEDLINE | ID: mdl-35788723

ABSTRACT

We analyzed the contributions of structural variants (SVs) to gliomagenesis across 179 pediatric high-grade gliomas (pHGGs). The most recurrent SVs targeted MYC isoforms and receptor tyrosine kinases (RTKs), including an SV amplifying a MYC enhancer in 12% of diffuse midline gliomas (DMG), indicating an underappreciated role for MYC in pHGG. SV signature analysis revealed that tumors with simple signatures were TP53 wild type (TP53WT) but showed alterations in TP53 pathway members PPM1D and MDM4. Complex signatures were associated with direct aberrations in TP53, CDKN2A and RB1 early in tumor evolution and with later-occurring extrachromosomal amplicons. All pHGGs exhibited at least one simple-SV signature, but complex-SV signatures were primarily restricted to subsets of H3.3K27M DMGs and hemispheric pHGGs. Importantly, DMGs with complex-SV signatures were associated with shorter overall survival independent of histone mutation and TP53 status. These data provide insight into the impact of SVs on gliomagenesis and the mechanisms that shape them.


Subject(s)
Brain Neoplasms , Glioma , Brain Neoplasms/genetics , Cell Cycle Proteins/genetics , Child , Glioma/genetics , Histones/genetics , Humans , Mutation , Proto-Oncogene Proteins/genetics
4.
Nat Commun ; 10(1): 3731, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427603

ABSTRACT

Pilocytic astrocytoma (PA), the most common childhood brain tumor, is a low-grade glioma with a single driver BRAF rearrangement. Here, we perform scRNAseq in six PAs using methods that enabled detection of the rearrangement. When compared to higher-grade gliomas, a strikingly higher proportion of the PA cancer cells exhibit a differentiated, astrocyte-like phenotype. A smaller proportion of cells exhibit a progenitor-like phenotype with evidence of proliferation. These express a mitogen-activated protein kinase (MAPK) programme that was absent from higher-grade gliomas. Immune cells, especially microglia, comprise 40% of all cells in the PAs and account for differences in bulk expression profiles between tumor locations and subtypes. These data indicate that MAPK signaling is restricted to relatively undifferentiated cancer cells in PA, with implications for investigational therapies directed at this pathway.


Subject(s)
Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/pathology , Neural Stem Cells/cytology , Proto-Oncogene Proteins B-raf/genetics , Animals , Brain Neoplasms/genetics , Humans , MAP Kinase Signaling System/genetics , Mice , Microglia/pathology , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Oligodendroglia/cytology , Oncogene Proteins, Fusion/metabolism , Tumor Cells, Cultured
5.
Nat Commun ; 10(1): 2400, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31160565

ABSTRACT

BET-bromodomain inhibition (BETi) has shown pre-clinical promise for MYC-amplified medulloblastoma. However, the mechanisms for its action, and ultimately for resistance, have not been fully defined. Here, using a combination of expression profiling, genome-scale CRISPR/Cas9-mediated loss of function and ORF/cDNA driven rescue screens, and cell-based models of spontaneous resistance, we identify bHLH/homeobox transcription factors and cell-cycle regulators as key genes mediating BETi's response and resistance. Cells that acquire drug tolerance exhibit a more neuronally differentiated cell-state and expression of lineage-specific bHLH/homeobox transcription factors. However, they do not terminally differentiate, maintain expression of CCND2, and continue to cycle through S-phase. Moreover, CDK4/CDK6 inhibition delays acquisition of resistance. Therefore, our data provide insights about the mechanisms underlying BETi effects and the appearance of resistance and support the therapeutic use of combined cell-cycle inhibitors with BETi in MYC-amplified medulloblastoma.


Subject(s)
Azepines/pharmacology , Cell Cycle/drug effects , Cerebellar Neoplasms/drug therapy , Medulloblastoma/drug therapy , Neurogenesis/drug effects , Proteins/antagonists & inhibitors , Triazoles/pharmacology , Animals , Basic Helix-Loop-Helix Transcription Factors/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , CRISPR-Cas Systems , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Lineage , Cerebellar Neoplasms/genetics , Cyclin D2/drug effects , Cyclin D2/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Drug Resistance, Neoplasm , Gene Expression Profiling , Humans , Medulloblastoma/genetics , Mice , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Proto-Oncogene Proteins c-myc/genetics , S Phase/drug effects
6.
Clin Cancer Res ; 24(7): 1691-1704, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29351916

ABSTRACT

Purpose: Pulmonary carcinoid tumors account for up to 5% of all lung malignancies in adults, comprise 30% of all carcinoid malignancies, and are defined histologically as typical carcinoid (TC) and atypical carcinoid (AC) tumors. The role of specific genomic alterations in the pathogenesis of pulmonary carcinoid tumors remains poorly understood. We sought to identify genomic alterations and pathways that are deregulated in these tumors to find novel therapeutic targets for pulmonary carcinoid tumors.Experimental Design: We performed integrated genomic analysis of carcinoid tumors comprising whole genome and exome sequencing, mRNA expression profiling and SNP genotyping of specimens from normal lung, TC and AC, and small cell lung carcinoma (SCLC) to fully represent the lung neuroendocrine tumor spectrum.Results: Analysis of sequencing data found recurrent mutations in cancer genes including ATP1A2, CNNM1, MACF1, RAB38, NF1, RAD51C, TAF1L, EPHB2, POLR3B, and AGFG1 The mutated genes are involved in biological processes including cellular metabolism, cell division cycle, cell death, apoptosis, and immune regulation. The top most significantly mutated genes were TMEM41B, DEFB127, WDYHV1, and TBPL1 Pathway analysis of significantly mutated and cancer driver genes implicated MAPK/ERK and amyloid beta precursor protein (APP) pathways whereas analysis of CNV and gene expression data suggested deregulation of the NF-κB and MAPK/ERK pathways. The mutation signature was predominantly C>T and T>C transitions with a minor contribution of T>G transversions.Conclusions: This study identified mutated genes affecting cancer relevant pathways and biological processes that could provide opportunities for developing targeted therapies for pulmonary carcinoid tumors. Clin Cancer Res; 24(7); 1691-704. ©2018 AACR.


Subject(s)
Carcinoid Tumor/genetics , Lung Neoplasms/genetics , Mutation/genetics , Signal Transduction/genetics , Aged , Amyloid beta-Peptides/genetics , Carcinoma, Neuroendocrine/genetics , Carcinoma, Small Cell/genetics , Cell Cycle/genetics , Exome/genetics , Female , Genomics/methods , Humans , Lung/pathology , MAP Kinase Signaling System/genetics , Male , Middle Aged , Mitogen-Activated Protein Kinases , NF-kappa B/genetics , Neuroendocrine Tumors/genetics , RNA, Messenger/genetics , Small Cell Lung Carcinoma/genetics
7.
Nat Commun ; 7: 12160, 2016 07 04.
Article in English | MEDLINE | ID: mdl-27374210

ABSTRACT

Aneuploidy and copy-number alterations (CNAs) are a hallmark of human cancer. Although genetically engineered mouse models (GEMMs) are commonly used to model human cancer, their chromosomal landscapes remain underexplored. Here we use gene expression profiles to infer CNAs in 3,108 samples from 45 mouse models, providing the first comprehensive catalogue of chromosomal aberrations in cancer GEMMs. Mining this resource, we find that most chromosomal aberrations accumulate late during breast tumorigenesis, and observe marked differences in CNA prevalence between mouse mammary tumours initiated with distinct drivers. Some aberrations are recurrent and unique to specific GEMMs, suggesting distinct driver-dependent routes to tumorigenesis. Synteny-based comparison of mouse and human tumours narrows critical regions in CNAs, thereby identifying candidate driver genes. We experimentally validate that loss of Stratifin (SFN) promotes HER2-induced tumorigenesis in human cells. These results demonstrate the power of GEMM CNA analysis to inform the pathogenesis of human cancer.


Subject(s)
Carcinogenesis/genetics , Chromosome Aberrations , Mammary Neoplasms, Animal/genetics , Mutation/genetics , 14-3-3 Proteins/metabolism , Aneuploidy , Animals , Carcinogenesis/pathology , Cell Line, Tumor , DNA Copy Number Variations/genetics , Disease Models, Animal , Down-Regulation/genetics , Female , Gene Expression Profiling , Genetic Engineering , Genomic Instability , Humans , Mice, Transgenic , Receptor, ErbB-2/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL