Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Mol Biol Rep ; 49(6): 5511-5520, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35484441

ABSTRACT

BACKGROUND: Onion is an economically important vegetable cultivated worldwide on a large scale. Liberal exchange of germplasm and frequent selection caused narrow genetic diversity in most crops, including onion. Thus, it is essential to estimate and understand genetic diversity before launching of any breeding program. The current study was conducted to explore genetic diversity among 39 short-day onion genotypes (indigenous and exotic). METHODS AND RESULTS: All the genotypes were evaluated for various phenotypic traits by using single nucleotide polymorphism (SNP) genotyping based on KASPar assays. Principal component analysis (PCA) was performed to determine the variability among genotypes. The four principal components with eigenvalue greater than 1 accounted for 67.5656% variability for quantitative traits, whereas first five principal components with eigenvalue greater than 0.7 accounted for 86.24% variation among the genotypes for qualitative traits. The principal component analysis identified diverse traits including bulb weight, bulb diameter, plant height, number of survived plants and vitamin C. These traits were further analyzed through ANOVA (Analysis of Variance) following augmented block design to describe genotypic variability for selected traits. Onion genotypes showed significant variation for bulb weight, bulb diameter and Vitamin C. Genotypic clustering based on PCA showed that 15 indigenous genotypes were clustered with exotic genotypes (14) while remaining indigenous genotypes (10) were distant. A total of 30 SNPs were used for assessment of genetic diversity out of these, 24 SNPs were detected with polymorphic loci (0.8%, heterozygosity), while only six markers were with monomorphic sites (0.2% heterozygosity). Subsequently, population structure analysis revealed three different populations indicating significant variability. CONCLUSION: Conclusively, a significant similarity between exotic and a group of indigenous genotypes indicates direct adoption of exotic genotypes or their sister lines. A further broadening of the genetic base is required and could be done by crossing distant genotypes.


Subject(s)
Onions , Polymorphism, Single Nucleotide , Ascorbic Acid , Genetic Variation/genetics , Genotype , Onions/genetics , Plant Breeding , Polymorphism, Single Nucleotide/genetics
2.
Pak J Pharm Sci ; 30(1 Suppl): 335-340, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28625963

ABSTRACT

Metallo-ß-lactamases (MBLs) are zinc ion dependent enzymes that are responsible for the emergence and spread of ß-lactam resistance among bacterial pathogens. There are uncharacterized putative MBLs in the environment and their emergence is major interference in the generation of universal MBL inhibitors so it is important to identify and characterize novel MBLs. In this study two novel MBLs from Luteimonas sp. J29 and Pseudoxanthomonas mexicana were identified using B3 MBLs as query in BLAST database search. 3D models of putative MBLs generated by SWISS-MODEL server taking AIM-1 as a structural template were verified using web based structure assessment and validation programs. Multiple sequence alignment revealed that residues important for substrate binding were conserved and loop region residues (156-162 and 223-230) important for catalysis are variable in these novel MBLs. Homology models showed typical MBL α/ß/ß/α sandwich fold containing six α helices, twelve ß strands and metal interacting residues are conserved in similar way as with other B3 MBLs. We report promising putative B3 MBLs with some variations and substrate docking studies revealed that novel MBLs have attributes close to acquired B3 MBLs.


Subject(s)
beta-Lactamases/metabolism , Amino Acid Sequence , Catalytic Domain/physiology , Sequence Alignment , Substrate Specificity/physiology , Zinc/metabolism , beta-Lactams/metabolism
3.
Front Plant Sci ; 14: 1265700, 2023.
Article in English | MEDLINE | ID: mdl-38023925

ABSTRACT

This study aimed to investigate the impact of individual drought, heat, and combined drought and heat stress on twelve cotton genotypes, including eight tolerant and four susceptible genotypes. A field experiment was carried out by employing a randomized complete block split-plot design, with treatments (control, drought, heat, drought + heat), and cotton genotypes assigned to the main plots and sub-plots respectively. The results showed that the combined stress had a more severe impact on the yield and fiber quality of cotton genotypes compared to individual stresses. Among the studied genotypes, FB-Shaheen, FH-207, MNH-886, and White Gold exhibited superior performance in regard to agronomic and fiber quality characters under combined stress environments. Physiological parameters, including transpiration rate, stomatal conductance, relative water contents, and photosynthetic rate, were significantly reduced under combined stress. However, specific genotypes, MNH-886, FH-207, White Gold, and FB-Shaheen, demonstrated better maintenance of these parameters, indicating their enhanced tolerance to the combined stress. Furthermore, the accumulation of reactive oxygen species was more pronounced under combined stress compared to individual stressors. Tolerant genotypes showed lower levels of H2O2 and MDA accumulation, while susceptible genotypes exhibited higher levels of oxidative damage. Antioxidant enzyme activities, such as superoxide dismutase, peroxidase, and catalase, increased under combined stress, with tolerant genotypes displaying higher enzyme activities. Conversely, susceptible genotypes (AA-703, KZ 191, IR-6, and S-15) demonstrated lower increases in enzymatic activities under combined stress conditions. Biochemical traits, including proline, total phenolic content, flavonoids, and ascorbic acid, exhibited higher levels in resistant genotypes under combined stress, while sensitive genotypes displayed decreased levels of these traits. Additionally, chlorophyll a & b, and carotenoid levels were notably decreased under combined stress, with tolerant genotypes experiencing a lesser decrease compared to susceptible genotypes.

SELECTION OF CITATIONS
SEARCH DETAIL