Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.061
Filter
Add more filters

Publication year range
1.
Cell ; 175(4): 947-961.e17, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30401435

ABSTRACT

Interactions between the gut microbiota, diet, and the host potentially contribute to the development of metabolic diseases. Here, we identify imidazole propionate as a microbially produced histidine-derived metabolite that is present at higher concentrations in subjects with versus without type 2 diabetes. We show that imidazole propionate is produced from histidine in a gut simulator at higher concentrations when using fecal microbiota from subjects with versus without type 2 diabetes and that it impairs glucose tolerance when administered to mice. We further show that imidazole propionate impairs insulin signaling at the level of insulin receptor substrate through the activation of p38γ MAPK, which promotes p62 phosphorylation and, subsequently, activation of mechanistic target of rapamycin complex 1 (mTORC1). We also demonstrate increased activation of p62 and mTORC1 in liver from subjects with type 2 diabetes. Our findings indicate that the microbial metabolite imidazole propionate may contribute to the pathogenesis of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Gastrointestinal Microbiome , Imidazoles/metabolism , Insulin/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Signal Transduction , Animals , Cells, Cultured , Diabetes Mellitus, Type 2/microbiology , HEK293 Cells , Histidine/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Sequestosome-1 Protein/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Nature ; 620(7973): 381-385, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532933

ABSTRACT

The human gut microbiota has gained interest as an environmental factor that may contribute to health or disease1. The development of next-generation probiotics is a promising strategy to modulate the gut microbiota and improve human health; however, several key candidate next-generation probiotics are strictly anaerobic2 and may require synergy with other bacteria for optimal growth. Faecalibacterium prausnitzii is a highly prevalent and abundant human gut bacterium associated with human health, but it has not yet been developed into probiotic formulations2. Here we describe the co-isolation of F. prausnitzii and Desulfovibrio piger, a sulfate-reducing bacterium, and their cross-feeding for growth and butyrate production. To produce a next-generation probiotic formulation, we adapted F. prausnitzii to tolerate oxygen exposure, and, in proof-of-concept studies, we demonstrate that the symbiotic product is tolerated by mice and humans (ClinicalTrials.gov identifier: NCT03728868 ) and is detected in the human gut in a subset of study participants. Our study describes a technology for the production of next-generation probiotics based on the adaptation of strictly anaerobic bacteria to tolerate oxygen exposures without a reduction in potential beneficial properties. Our technology may be used for the development of other strictly anaerobic strains as next-generation probiotics.


Subject(s)
Biotechnology , Gastrointestinal Microbiome , Probiotics , Animals , Humans , Mice , Butyrates/metabolism , Oxygen/metabolism , Oxygen/pharmacology , Probiotics/metabolism , Aerobiosis , Faecalibacterium prausnitzii/drug effects , Faecalibacterium prausnitzii/metabolism , Symbiosis , Biotechnology/methods
3.
Dev Biol ; 505: 130-140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981061

ABSTRACT

The Trithorax group (trxG) proteins counteract the repressive effect of Polycomb group (PcG) complexes and maintain transcriptional memory of active states of key developmental genes. Although chromatin structure and modifications appear to play a fundamental role in this process, it is not clear how trxG prevents PcG-silencing and heritably maintains an active gene expression state. Here, we report a hitherto unknown role of Drosophila Multiple ankyrin repeats single KH domain (Mask), which emerged as one of the candidate trxG genes in our reverse genetic screen. The genome-wide binding profile of Mask correlates with known trxG binding sites across the Drosophila genome. In particular, the association of Mask at chromatin overlaps with CBP and H3K27ac, which are known hallmarks of actively transcribed genes by trxG. Importantly, Mask predominantly associates with actively transcribed genes in Drosophila. Depletion of Mask not only results in the downregulation of trxG targets but also correlates with diminished levels of H3K27ac. The fact that Mask positively regulates H3K27ac levels in flies was also found to be conserved in human cells. Strong suppression of Pc mutant phenotype by mutation in mask provides physiological relevance that Mask contributes to the anti-silencing effect of trxG, maintaining expression of key developmental genes. Since Mask is a downstream effector of multiple cell signaling pathways, we propose that Mask may connect cell signaling with chromatin mediated epigenetic cell memory governed by trxG.


Subject(s)
Chromatin , Drosophila Proteins , Animals , Humans , Chromatin/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Polycomb Repressive Complex 1/genetics , Chromosomes , Drosophila/metabolism , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , DNA-Binding Proteins/metabolism
4.
Circulation ; 149(4): 293-304, 2024 01 23.
Article in English | MEDLINE | ID: mdl-37950893

ABSTRACT

BACKGROUND: The optimal approach to identify individuals with diabetes who are at a high risk for developing heart failure (HF) to inform implementation of preventive therapies is unknown, especially in those without atherosclerotic cardiovascular disease (ASCVD). METHODS: Adults with diabetes and no HF at baseline from 7 community-based cohorts were included. Participants without ASCVD who were at high risk for developing HF were identified using 1-step screening strategies: risk score (WATCH-DM [Weight, Age, Hypertension, Creatinine, HDL-C, Diabetes Control, QRS Duration, MI, and CABG] ≥12), NT-proBNP (N-terminal pro-B-type natriuretic peptide ≥125 pg/mL), hs-cTn (high-sensitivity cardiac troponin T ≥14 ng/L; hs-cTnI ≥31 ng/L), and echocardiography-based diabetic cardiomyopathy (echo-DbCM; left atrial enlargement, left ventricular hypertrophy, or diastolic dysfunction). High-risk participants were also identified using 2-step screening strategies with a second test to identify residual risk among those deemed low risk by the first test: WATCH-DM/NT-proBNP, NT-proBNP/hs-cTn, NT-proBNP/echo-DbCM. Across screening strategies, the proportion of HF events identified, 5-year number needed to treat and number needed to screen to prevent 1 HF event with an SGLT2i (sodium-glucose cotransporter 2 inhibitor) among high-risk participants, and cost of screening were estimated. RESULTS: The initial study cohort included 6293 participants (48.2% women), of whom 77.7% without prevalent ASCVD were evaluated with different HF screening strategies. At 5-year follow-up, 6.2% of participants without ASCVD developed incident HF. The 5-year number needed to treat to prevent 1 HF event with an SGLT2i among participants without ASCVD was 43 (95% CI, 29-72). In the cohort without ASCVD, high-risk participants identified using 1-step screening strategies had a low 5-year number needed to treat (22 for NT-proBNP to 37 for echo-DbCM). However, a substantial proportion of HF events occurred among participants identified as low risk using 1-step screening approaches (29% for echo-DbCM to 47% for hs-cTn). Two-step screening strategies captured most HF events (75-89%) in the high-risk subgroup with a comparable 5-year number needed to treat as the 1-step screening approaches (30-32). The 5-year number needed to screen to prevent 1 HF event was similar across 2-step screening strategies (45-61). However, the number of tests and associated costs were lowest for WATCH-DM/NT-proBNP ($1061) compared with other 2-step screening strategies (NT-proBNP/hs-cTn: $2894; NT-proBNP/echo-DbCM: $16 358). CONCLUSIONS: Selective NT-proBNP testing based on the WATCH-DM score efficiently identified a high-risk primary prevention population with diabetes expected to derive marked absolute benefits from SGLT2i to prevent HF.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Diabetes Mellitus , Heart Failure , Adult , Humans , Female , Male , Biomarkers , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/prevention & control , Cohort Studies , Atherosclerosis/diagnosis , Atherosclerosis/epidemiology , Atherosclerosis/prevention & control , Peptide Fragments , Natriuretic Peptide, Brain , Troponin T
5.
Eur Heart J ; 45(17): 1524-1536, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38427130

ABSTRACT

BACKGROUND AND AIMS: Persons with rheumatoid arthritis (RA) have an increased risk of obstetric-associated complications, as well as long-term cardiovascular (CV) risk. Hence, the aim was to evaluate the association of RA with acute CV complications during delivery admissions. METHODS: Data from the National Inpatient Sample (2004-2019) were queried utilizing ICD-9 or ICD-10 codes to identify delivery hospitalizations and a diagnosis of RA. RESULTS: A total of 12 789 722 delivery hospitalizations were identified, of which 0.1% were among persons with RA (n = 11 979). Individuals with RA, vs. those without, were older (median 31 vs. 28 years, P < .01) and had a higher prevalence of chronic hypertension, chronic diabetes, gestational diabetes mellitus, obesity, and dyslipidaemia (P < .01). After adjustment for age, race/ethnicity, comorbidities, insurance, and income, RA remained an independent risk factor for peripartum CV complications including preeclampsia [adjusted odds ratio (aOR) 1.37 (95% confidence interval 1.27-1.47)], peripartum cardiomyopathy [aOR 2.10 (1.11-3.99)], and arrhythmias [aOR 2.00 (1.68-2.38)] compared with no RA. Likewise, the risk of acute kidney injury and venous thromboembolism was higher with RA. An overall increasing trend of obesity, gestational diabetes mellitus, and acute CV complications was also observed among individuals with RA from 2004-2019. For resource utilization, length of stay and cost of hospitalization were higher for deliveries among persons with RA. CONCLUSIONS: Pregnant persons with RA had higher risk of preeclampsia, peripartum cardiomyopathy, arrhythmias, acute kidney injury, and venous thromboembolism during delivery hospitalizations. Furthermore, cardiometabolic risk factors among pregnant individuals with RA rose over this 15-year period.


Subject(s)
Arthritis, Rheumatoid , Humans , Female , Pregnancy , United States/epidemiology , Adult , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/complications , Hospitalization/statistics & numerical data , Pregnancy Complications, Cardiovascular/epidemiology , Cardiovascular Diseases/epidemiology , Risk Factors , Delivery, Obstetric/adverse effects , Delivery, Obstetric/statistics & numerical data , Pregnancy Complications/epidemiology
6.
J Lipid Res ; : 100588, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969065

ABSTRACT

Lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease. A size polymorphism in the apolipoprotein(a) [apo(a)] gene, determined by the number of Kringle (K) repeats, inversely regulates Lp(a) levels. Non-genetic factors including dietary saturated fat influence Lp(a) levels. However, less is known about the effects of carbohydrates including dietary sugars. In this double-blind, parallel-arm study among 32 overweight/obese adults, we investigated the effect of consuming glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks on Lp(a) level and assessed the role of the apo(a) size polymorphism. The mean (± SD) age of participants was 54 ± 8 years, 50% were women, and 75% were of European descent. At the end of the 10-week intervention, Lp(a) level was reduced by an average (± SEM) of -13.2% ± 4.3% in all participants (p=0.005); by -15.3% ± 7.8% in the 15 participants who consumed glucose (p=0.07); and by -11.3% ± 4.5% in the 17 participants who consumed fructose (p=0.02), without any significant difference in the effect between the two sugar groups. The relative changes in Lp(a) levels were similar across subgroups of lower vs higher baseline Lp(a) level or carrier vs non-carrier of an atherogenic small (≤22K) apo(a) size. In contrast, LDL-C increased. In conclusion, in older, overweight/obese adults, consuming sugar-sweetened beverages reduced Lp(a) levels by ∼13% independently of apo(a) size variability and the type of sugar consumed. The Lp(a) response was opposite to that of LDL-C and triglyceride concentrations. These findings suggest that metabolic pathways might impact Lp(a) levels.

7.
BMC Genomics ; 25(1): 513, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789947

ABSTRACT

BACKGROUND: Aldehyde dehydrogenases (ALDHs) are a family of enzymes that catalyze the oxidation of aldehyde molecules into the corresponding carboxylic acid, regulate the balance of aldehydes and protect plants from the poisoning caused by excessive accumulation of aldehydes; however, this gene family has rarely been studied in cotton. RESULTS: In the present study, genome-wide identification was performed, and a total of 114 ALDH family members were found in three cotton species, Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii. The ALDH genes were divided into six subgroups by evolutionary analysis. ALDH genes in the same subgroup showed similar gene structures and conserved motifs, but some genes showed significant differences, which may result in functional differences. Chromosomal location analysis and selective pressure analysis revealed that the ALDH gene family had experienced many fragment duplication events. Cis-acting element analysis revealed that this gene family may be involved in the response to various biotic and abiotic stresses. The RT‒qPCR results showed that the expression levels of some members of this gene family were significantly increased under salt stress conditions. Gohir.A11G040800 and Gohir.D06G046200 were subjected to virus-induced gene silencing (VIGS) experiments, and the sensitivity of the silenced plants to salt stress was significantly greater than that of the negative control plants, suggesting that Gohir.A11G040800 and Gohir.D06G046200 may be involved in the response of cotton to salt stress. CONCLUSIONS: In total, 114 ALDH genes were identified in three Gossypium species by a series of bioinformatics analysis. Gene silencing of the ALDH genes of G. hirsutum revealed that ALDH plays an important role in the response of cotton to salt stress.


Subject(s)
Aldehyde Dehydrogenase , Genome, Plant , Gossypium , Multigene Family , Phylogeny , Gossypium/genetics , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Chromosome Mapping , Chromosomes, Plant/genetics , Gene Silencing
8.
J Am Chem Soc ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953865

ABSTRACT

Mechanical recycling is one of the simplest and most economical strategies to address ever-increasing plastic pollution, but it cannot be applied to immiscible mixed plastics and suffers from property deterioration after each cycle. By combining the amphiphilic block copolymer strategy and reactive compatibilization strategy, we designed a series of stapler strategies for compatibilizing/upcycling mixed plastics. First, various functionalized graft copolymers were accessed via different synthetic routes. Subsequently, the addition of a very small amount of stapler molecules induced a synergistic effect with the graft copolymers that improved the compatibility and mechanical properties of mixed plastics. These strategies were highly effective for various binary/ternary plastic systems and can be directly applied to postconsumer waste plastics, which can increase the toughness of mixed postconsumer waste plastics by 162 times. Most importantly, it also effectively improved the impact resistance, adhesion performance, and three-dimensional (3D) printing performance of mixed plastics, and permitted the recycling of plastic blends 20 times with minimal degradation in their mechanical properties.

9.
Trends Genet ; 37(8): 695-698, 2021 08.
Article in English | MEDLINE | ID: mdl-33892960

ABSTRACT

Like protein-coding genes, long noncoding RNA (lncRNA) genes are composed of introns and exons. After their transcription, lncRNAs are subject to constitutive and/or alternative splicing. Here, we describe the current knowledge on lncRNA splice variants and their functional implications in cell biology.


Subject(s)
Alternative Splicing/genetics , DNA, Recombinant/genetics , RNA, Long Noncoding/genetics , Exons/genetics , Introns/genetics
10.
Ann Surg ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860383

ABSTRACT

OBJECTIVE: We sought to characterize postoperative outcomes among patients who underwent an oncologic operation relative to whether the treating surgeon was an international medical graduate (IMG) versus a United States medical graduate (USMG). SUMMARY BACKGROUND DATA: IMGs comprise approximately one-quarter of the physician workforce in the United States. METHODS: The 100% Medicare Standard Analytic Files were utilized to extract data on patients with breast, lung, hepato-pancreato-biliary (HPB), and colorectal cancer who underwent surgical resection between 2014 and 2020. Entropy balancing (EB) and multivariable regression analysis were performed to evaluate the association between postoperative outcomes among USMG and IMG surgeons. RESULTS: Among 285,930 beneficiaries, 242,914 (85.0%) and 43,016 (15.0%) underwent surgery by a USMG and IMG surgeon, respectively. Overall, 129,576 (45.3%) individuals were male, and 168,848 (59.1%) patients had a Charlson Comorbidity Index score >2. Notably, IMG surgeons were more likely to care for racial/ethnic minority patients (14.7% vs. 12.5%) and those with a high social vulnerability index (33.3% vs. 32.1%) (all P<0.001). On multivariable analysis after EB, patients treated by an IMG surgeon were less likely to experience adverse postoperative outcomes including 90-day readmission (OR 0.89, 95%CI 0.80-0.99) and index complications (OR 0.84, 95%CI 0.74-0.95) versus USMG surgeons (all P<0.05). Patients treated by IMG versus USMG surgeons had no difference in likelihood to achieve a textbook outcome (OR 1.10, 95%CI 0.99-1.21; P=0.077). CONCLUSIONS: Postoperative outcomes among patients treated by IMG surgeons were roughly equivalent to those of USMG surgeons. In addition, IMG surgeons were more likely to care for patients with multiple comorbidities and individuals from vulnerable communities.

11.
BMC Plant Biol ; 24(1): 553, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877414

ABSTRACT

BACKGROUND: The study offers insightful information about the adaptability of local and imported Chili cultivars. This experiment examines how three different chili cultivars Tanjung, Unpad, and Osaka perform in the germination and early growth phases while considering a wide range of environmental conditions. Research conducted in Jatinangor, Sumedang Regency, Indonesia, highlights the differences between cultivars and the varied possibilities for adaptability each variation possesses. RESULTS: Among them, Tanjung stands out as the most promising cultivar; its robust performance is demonstrated by its high germination index 91.7. Notable features of Osaka include the highest biomass output (1.429 g), the best water usage efficiency (WUE) at 0.015 g/liter, and the best distribution uniformity (91.2%) and application efficiency (73.6%) under different irrigation conditions. Tanjung's competitiveness is further evidenced by the fact that it trails Osaka closely on several metrics. Lower performance across criteria for Unpad suggests possible issues with flexibility. CONCLUSION: The value of this information becomes apparent when it comes to well-informed breeding programs and cultivation techniques, especially considering uncertain climate patterns and global climate change. This research contributes significantly to the body of knowledge, enabling well-informed choices for environmentally dynamic, sustainable chili farming.


Subject(s)
Capsicum , Germination , Capsicum/growth & development , Capsicum/physiology , Climate Change , Climate , Indonesia , Adaptation, Physiological , Biomass
12.
BMC Plant Biol ; 24(1): 490, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825718

ABSTRACT

The aim of the experiment was to evaluate the potential of promising summer maize genotypes and optimal stage of harvesting these genotypes for ensiling in terms of dry matter (DM), starch, and crude protein (CP) yields, silage fermentation quality, nutrients profile, total digestible nutrients, metabolizable energy (ME) content, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate (CHO) subfractions composition, in vitro DM digestibility (DMD) and in situ starch degradation characteristics. Six maize genotypes were chosen for the study: DK9108 from Monsanto, P30Y87, P3939 from Pioneer, QPM-300 (quality protein maize) and W94 from the International Maize and Wheat Improvement Center (CIMMYT), and a local cultivar, Afgoii, from the Cereal Research Institute (Persabaq, KP). A total of 72 plots (8 m × 10 m) were blocked in three replicate fields, and within each field, each genotype was sown in four replicate plots according to a randomized complete block design. For the data analysis, the Proc-Mixed procedure of Statistical Analysis System with repeated measure analysis of variance was used. The DM yield was strongly influenced (P < 0.001) by maize genotypes, varying from 12.6 to 17.0 tons/ha. Except for total CHO and ammonia nitrogen (NH3-N), the contents of all measured chemical components varied (P < 0.001) among the genotypes. Further comparison revealed that, genotype P3939 had a higher (P < 0.05) content of CP (7.27 vs. 6.92%), starch (36.7 vs. 27.9%), DMD (65.4 vs. 60.0%), ME (2.51 vs. 2.30 Mcal/kg) and lactic acid (5.32 vs. 4.83%) and lowest content of NDF (37.3 vs. 43.1%), pH (3.7 vs. 4.10) compared to the local cultivar (Afgoii). Advancement of post-flowering maturity from 25 to 35% DM (23 to 41 days after flowering (DAF)) increased (P < 0.05) the DM yield (10.4 to 17.8 tons/ha), starch content (29.1 to 35.0%), DMD (65.3 to 67.3%) and ME (2.34 to 2.47 Mcal/kg), and decreased (P < 0.001) the contents of CP (7.42-6.73%), NDF (48.8-38.5%), pH (4.10 to 3.60), NH3-N (8.93-7.80%N) and effective degradability of starch (95.4 to 89.4). Results showed that for higher yields and silage nutritional and fermentation quality, maize crops should be harvested at whole crop DM content of 30-35% (34 to 41 DAF). It was further concluded that genotype P3939 is the most suitable summer maize genotype for silage production in terms of yields and silage nutritional and fermentation quality under the hot environmental conditions of the tropics.


Subject(s)
Silage , Zea mays , Zea mays/genetics , Genotype , Tropical Climate , Fermentation , Starch , Carbohydrates , Plant Proteins , Pakistan , Agriculture
13.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637784

ABSTRACT

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Subject(s)
Alternaria , Metal Nanoparticles , Quercus , Solanum lycopersicum , Silver/chemistry , Metal Nanoparticles/chemistry , Antifungal Agents , Spectroscopy, Fourier Transform Infrared , Plant Extracts/pharmacology , Plant Extracts/chemistry , X-Ray Diffraction , Anti-Bacterial Agents
14.
BMC Plant Biol ; 24(1): 423, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38760709

ABSTRACT

BACKGROUND: Soil salinity is one of the major menaces to food security, particularly in dealing with the food demand of the ever-increasing global population. Production of cereal crops such as wheat is severely affected by soil salinity and improper fertilization. The present study aimed to examine the effect of selected microbes and poultry manure (PM) on seedling emergence, physiology, nutrient uptake, and growth of wheat in saline soil. A pot experiment was carried out in research area of Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan. Saline soil (12 dS m- 1 w/w) was developed by spiking using sodium chloride, and used in experiment along with two microbial strains (i.e., Alcaligenes faecalis MH-2 and Achromobacter denitrificans MH-6) and PM. Finally, wheat seeds (variety Akbar-2019) were sown in amended and unamended soil, and pots were placed following a completely randomized design. The wheat crop was harvested after 140 days of sowing. RESULTS: The results showed a 10-39% increase (compared to non-saline control) in agronomic, physiological, and nutritive attributes of wheat plants when augmented with PM and microbes. Microbes together with PM significantly enhanced seedling emergence (up to 38%), agronomic (up to 36%), and physiological (up to 33%) in saline soil as compared to their respective unamended control. Moreover, the co-use of microbes and PM also improved soil's physicochemical attributes and enhanced N (i.e., 21.7%-17.1%), P (i.e., 24.1-29.3%), and K (i.e., 28.7%-25.3%) availability to the plant (roots and shoots, respectively). Similarly, the co-use of amendments also lowered the Na+ contents in soil (i.e., up to 62%) as compared to unamended saline control. This is the first study reporting the effects of the co-addition of newly identified salt-tolerant bacterial strains and PM on seedling emergence, physiology, nutrient uptake, and growth of wheat in highly saline soil. CONCLUSION: Our findings suggest that co-using a multi-trait bacterial culture and PM could be an appropriate option for sustainable crop production in salt-affected soil.


Subject(s)
Manure , Poultry , Salinity , Soil , Triticum , Triticum/growth & development , Soil/chemistry , Animals , Soil Microbiology , Seedlings/growth & development , Fertilizers/analysis , Alcaligenes faecalis/growth & development
15.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38347449

ABSTRACT

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Subject(s)
Brassica napus , Metals, Heavy , Soil Pollutants , Antioxidants/metabolism , alpha-Tocopherol/pharmacology , alpha-Tocopherol/metabolism , Brassica napus/metabolism , Mercuric Chloride/toxicity , Mercuric Chloride/metabolism , Tocopherols/metabolism , Tocopherols/pharmacology , Metals, Heavy/metabolism , Proline/metabolism , Soil Pollutants/metabolism
16.
BMC Plant Biol ; 24(1): 221, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539080

ABSTRACT

Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was initiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contaminated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated with heavy metals. Heavy metal contamination led to a significant reduction in seed germination, seedling biomass, protein, and total nitrogen content of spinach plants grown in contaminated soils compared to control soils. In contrast, a significant increase in the content of metallothioneins and antioxidant enzymes was observed. Plants inoculated with B. cereus and B. aerius significantly reduced the oxidative stress induced by heavy metals by improving seed germination (%), seedling growth, nitrogen, and protein content. The content of metallothioneins and the activities of antioxidant enzymes were reduced in spinach plants grown from seeds inoculated with bacterial strains. In addition, plants inoculated with, B. cereus and B. aerius showed greater stomata opening than plants grown on soil contaminated with heavy metals, whose stomata were almost closed. These results suggested that both bacterial strains enhanced plant growth by reducing oxidative stress caused by metals.


Subject(s)
Loratadine/analogs & derivatives , Metals, Heavy , Soil Pollutants , Spinacia oleracea , Antioxidants/metabolism , Metals, Heavy/toxicity , Oxidative Stress , Bacteria/metabolism , Soil/chemistry , Plants/metabolism , Nitrogen/metabolism , Soil Pollutants/toxicity , Soil Pollutants/metabolism
17.
J Comput Chem ; 45(10): 622-632, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38063457

ABSTRACT

Pyrazinamide, an antituberculosis but documented toxic drug, is subjected to computational investigation along with the metal complexes via a DFT approach to predict the structure-activity and structure-toxicity relationship. 6-31G(d,p) basis set was used for Zn, Ni, Mn, Fe, and Co, while the SDD basis set was applied to Cu, Cr, Cd, and Hg. Several reactivity parameters and charge distribution were calculated and the reactivity profile was estimated. The complexes were found to be soft and polarizable which could be responsible for their binding with bacterial targets to inhibit their growth. In contrast, pyrazinamide which is found to be hard among all is susceptible to being toxic. Moreover, the electronegative nature of the complexes can endow them with a better antibacterial effect. Since metal complexes have been found to be less toxic and more biologically interactive by computational methods, they can be employed as potent drugs for the cure of tuberculosis.


Subject(s)
Coordination Complexes , Mercury , Pyrazinamide/pharmacology , Coordination Complexes/pharmacology , Anti-Bacterial Agents
18.
Blood Cells Mol Dis ; 104: 102798, 2024 01.
Article in English | MEDLINE | ID: mdl-37813040

ABSTRACT

Thrombocytopenia is a critical complication after radiation therapy and exposure. Dysfunction of megakaryocyte development and platelet production are key pathophysiological stages in ionizing radiation (IR)-induced thrombocytopenia. Protein kinase C (PKC) plays an important role in regulating megakaryocyte development and platelet production. However, it remains unclear how PKC regulates IR-induced megakaryocyte apoptosis. In this study, we found that pretreatment of PKC pan-inhibitor Go6983 delayed IR-induced megakaryocyte apoptosis, and inhibited IR-induced mitochondrial membrane potential and ROS production in CMK cells. Moreover, suppressing PKC activation inhibited cleaved caspase3 expression and reduced p38 phosphorylation levels, and IR-induced PKC activation might be regulated by p53. In vivo experiments confirmed that Go6983 promoted platelet count recovery after 21 days of 3 Gy total body irradiation. Furthermore, Go6983 reduced megakaryocyte apoptosis, increased the number of megakaryocyte and polyploid formation in bone marrow, and improved the survival rate of 6 Gy total body irradiation. In conclusion, our results provided a potential therapeutic target for IR-induced thrombocytopenia.


Subject(s)
Megakaryocytes , Thrombocytopenia , Humans , Protein Kinase C/metabolism , Protein Kinase C/therapeutic use , X-Rays , Thrombocytopenia/etiology , Thrombopoiesis , Apoptosis , Blood Platelets
19.
Ann Surg Oncol ; 31(5): 3222-3232, 2024 May.
Article in English | MEDLINE | ID: mdl-38361094

ABSTRACT

BACKGROUND: The COVID-19 pandemic disrupted health care delivery, including cancer screening practices. This study sought to determine the impact of the COVID-19 pandemic lockdown on colorectal cancer (CRC) screening relative to social vulnerability. METHODS: Using the Medicare Standard Analytic File, individuals 65 years old or older who were eligible for guideline-concordant CRC screening between 2019 and 2021 were identified. These data were merged with the Center for Disease Control Social Vulnerability Index (SVI) dataset. Changes in county-level monthly screening volumes relative to the start of the COVID-19 pandemic (March 2020) and easing of restrictions (March 2021) were assessed relative to SVI. RESULTS: Among 10,503,180 individuals continuously enrolled in Medicare with no prior diagnosis of CRC, 1,362,457 (12.97%) underwent CRC screening between 2019 and 2021. With the COVID-19 pandemic, CRC screening decreased markedly across the United States (median monthly screening: pre-pandemic [n = 76,444] vs pandemic era [n = 60,826]; median Δn = 15,618; p < 0.001). The 1-year post-pandemic overall CRC screening utilization generally rebounded to pre-COVID-19 levels (monthly median screening volumes: pandemic era [n = 60,826] vs post-pandemic [n = 74,170]; median Δn = 13,344; p < 0.001). Individuals residing in counties with the highest SVI experienced a larger decline in CRC screening odds than individuals residing in low-SVI counties (reference, low SVI: pre-pandemic high SVI [OR, 0.85] vs pandemic high SVI [OR, 0.81] vs post-pandemic high SVI [OR, 0.85]; all p < 0.001). CONCLUSIONS: The COVID-19 pandemic was associated with a decrease in CRC screening volumes. Patients who resided in high social vulnerability areas experienced the greatest pandemic-related decline.


Subject(s)
COVID-19 , Neoplasms , Humans , Aged , United States/epidemiology , Early Detection of Cancer , COVID-19/epidemiology , Communicable Disease Control , Ethnicity , Medicare , Pandemics , Social Vulnerability
20.
Ann Surg Oncol ; 31(2): 911-919, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37857986

ABSTRACT

BACKGROUND: Individuals with intellectual and developmental disabilities may face barriers in accessing healthcare, including cancer screening and detection services. We sought to assess the association of intellectual and developmental disabilities (IDD) with breast cancer screening rates. METHODS: Data from 2018 to 2020 was used to identify screening-eligible individuals from Medicare Standard Analytic Files. Adults aged 65-79 years who did not have a previous diagnosis of breast cancer were included. Multivariable regression was used to analyze the differences in breast cancer screening rates among individuals with and without IDD. RESULTS: Among 9,383,349 Medicare beneficiaries, 11,265 (0.1%) individuals met the criteria for IDD. Of note, individuals with IDD were more likely to be non-Hispanic White (90.5% vs. 87.3%), have a Charlson Comorbidity Index score ≤ 2 (66.2% vs. 85.5%), and reside in a low social vulnerability index neighborhood (35.7% vs. 34.4%). IDD was associated with reduced odds of undergoing breast cancer screening (odds ratio (OR) 0.77, 95% confidence interval (CI) 0.74-0.80; p < 0.001). Breast cancer screening rates in individuals with IDD were further influenced by social vulnerability and belonging to a racial/ethnic minority. CONCLUSIONS: Individuals with IDD may face additional barriers to breast cancer screening. The combination of IDD and social vulnerability placed patients at particularly high risk of not being screened for breast cancer.


Subject(s)
Breast Neoplasms , Adult , Child , Humans , Aged , United States/epidemiology , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/complications , Ethnicity , Early Detection of Cancer , Developmental Disabilities/diagnosis , Developmental Disabilities/epidemiology , Developmental Disabilities/complications , Medicare , Minority Groups
SELECTION OF CITATIONS
SEARCH DETAIL