Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Soft Matter ; 17(30): 7210-7220, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34269781

ABSTRACT

Molecular dynamics simulations are used to determine the temperature dependence of the dynamic and rheological properties of a model imidazolium-based ionic liquid (IL). The simulation results for the volumetric properties of the IL are in good agreement with the experimental results. The temperature dependence of the diffusion coefficient of anions and cations follows the Vogel-Fulcher-Tammann equation over the range of the temperatures studied. The shear viscosity of the IL shows a Newtonian plateau at low shear rates and shear-thinning behavior at high shear rates. The dynamic modulus values indicate that the IL behaves like a viscous liquid at high temperatures and low frequencies, while its viscoelastic response becomes similar to that of an elastic solid at low temperatures and high frequencies. Using the time-temperature superposition (TTS) principle, the dynamic moduli, shear viscosity, and mean squared displacement of cations and anions in the diffusive regime can be collapsed onto master curves by applying a single set of shift factors. Due to the large mismatch in the timescale investigated by the atomistically detailed simulations and experiments, the glass transition temperature predicted in simulations shifts to higher values. When this timescale mismatch is accounted for by using appropriate shift factors, the master curves of the dynamic moduli obtained in simulations closely match those obtained in experiments. This result demonstrates the exciting ability of TTS to overcome the large timescale disparity between simulations and experiments which will enable the use of molecular simulations for quantitatively predicting the rheological property values at frequencies of practical interest.

2.
Langmuir ; 34(3): 904-916, 2018 01 23.
Article in English | MEDLINE | ID: mdl-28877439

ABSTRACT

A Stokesian dynamics simulation of the effect of surface Couette flow on the microstructure of particles irreversibly adsorbed to an interface is presented. Rather than modeling both bulk phases, the interface, and particles in a full 3D simulation, known interfacial interactions between adsorbed particles are used to create a 2D model from a top down perspective. This novel methodology is easy to implement and computationally inexpensive, which makes it favorable to simulate behavior of particles under applied flow at fluid-fluid interfaces. The methodology is used to examine microstructure deformation of monodisperse, rigid spherical colloids with repulsive interactions when a surface Couette flow is imposed. Simulation results compare favorably to experimental results taken from literature, showing that interparticle forces must be 1 order of magnitude greater than viscous drag for microstructure to transition from aligned particle strings to rotation of local hexagonal domains. Additionally, it is demonstrated that hydrodynamic interactions between particles play a significant role in the magnitude of these microstructure deformations.

3.
Langmuir ; 32(44): 11591-11599, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27740775

ABSTRACT

Despite a range of promising applications, liquid-phase exfoliation of boron nitride nanosheets (BNNSs) is limited, both by low yield in common solvents as well as the disadvantages of using dissolved surfactants. One recently reported approach is the use of cosolvent systems to increase the as-obtained concentration of BNNS; the role of these solvents in aiding exfoliation and/or aiding colloidal stability of BNNSs is difficult to distinguish. In this paper, we have investigated the use of a t-butanol/water cosolvent to disperse BNNSs. We utilize solvent-exchange experiments to demonstrate that the t-butanol is in fact essential to colloidal stability; we then utilized molecular dynamics simulations to explore the mechanism of t-butanol/BNNS interactions. Taken together, the experimental and simulation results show that the key to the success of t-butanol (as compared to the other alcohols of higher or lower molecular weight) lies in its ability to act as a "liquid dispersant" which allows it to favorably interact with both water and BNNSs. Additionally, we show that the stable dispersions of BNNS in water/t-butanol systems may be freeze-dried to yield nonaggregated, redispersible BNNS powders, which would be useful in an array of industrial processes.

4.
Phys Chem Chem Phys ; 17(14): 9383-93, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25765970

ABSTRACT

Here we demonstrate through experiment and simulation the polymer-assisted dispersion of inorganic 2D layered nanomaterials such as boron nitride nanosheets (BNNSs), molybdenum disulfide nanosheets (MoS2), and tungsten disulfide nanosheets (WS2), and we show that spray drying can be used to alter such nanosheets into a crumpled morphology. Our data indicate that polyvinylpyrrolidone (PVP) can act as a dispersant for the inorganic 2D layered nanomaterials in water and a range of organic solvents; the effectiveness of our dispersion process was characterized by UV-vis spectroscopy, microscopy and dynamic light scattering. Molecular dynamics simulations confirm that PVP readily physisorbs to BNNS surfaces. Collectively, these results indicate that PVP acts as a general dispersant for nanosheets. Finally, a rapid spray drying technique was utilized to convert these 2D dispersed nanosheets into 3D crumpled nanosheets; this is the first report of 3D crumpled inorganic nanosheets of any kind. Electron microscopy images confirm that the crumpled nanosheets (1-2 µm in diameter) show a distinctive morphology with dimples on the surface as opposed to a wrinkled, compressed surface, which matches earlier simulation results. These results demonstrate the possibility of scalable production of inorganic nanosheets with tailored morphology.

5.
J Chem Phys ; 141(21): 214904, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25481166

ABSTRACT

Effect of chain architecture on the chain size, shape, and intrinsic viscosity was investigated by performing molecular dynamics simulations of polymer solutions in a good solvent. Four types of chains­linear, comb shaped, H-shaped, and star­were studied for this purpose using a model in which the solvent particles were considered explicitly. Results indicated that the chain length (N) dependence of the mean squared radius of gyration of the chains followed a power-law behavior ⟨R(g)(2)⟩(1/2)∼N(υ) with scaling exponents of υ = 0.605, 0.642, 0.602, and 0.608, for the linear, comb shaped, H-shaped, and star shaped chains, respectively. The simulation results for the geometrical shrinking factor were higher than the prior theoretical predictions for comb shaped chains. Analysis of chain shape demonstrated that the star chains were significantly smaller and more spherical than the others, while the comb and H-shaped polymer chains showed a more cylindrical shape. It is shown that the intrinsic viscosity of the chains can be calculated by plotting the specific viscosity determined from simulations against the solution concentration. The intrinsic viscosity exhibited linear behavior with the reciprocal of the overlap concentration for all chain architectures studied. The molecular weight dependence of the intrinsic viscosity followed the Mark-Houwink relation, [η] = KM(a), for all chain architectures. When comparing the calculated values of exponent a with the literature experimental values, agreement was found only for the H and star chains, and a disagreement for the linear and comb chains. The viscosity shrinking factor of the branched chains was compared with the available experimental data and the theoretical predictions and a general agreement was found.

6.
Clin Hypertens ; 29(1): 5, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36788562

ABSTRACT

The vitamin D receptor (VDR) gene serves as a good candidate gene for susceptibility to essential hypertension. The gene regulates the renin angiotensin system by influencing blood pressure regulation. Around 3% of the human genome is regulated by the vitamin D endocrine system. Several studies have reported mixed results with respect to relationship of VDR gene and hypertension. Observational evidence supports the concept that vitamin D plays a role in the pathogenesis of cardiovascular disease and arterial hypertension which is further supported by meta-analysis and case control studies reporting how VDR polymorphism leads to the onset and development of hypertension. In this review, we summarize the existing literature on the link between VDR and hypertension, including mechanistic studies, observational data, and clinical trials showing relationship of vitamin D level and hypertension with a focus on recent findings related to genetic studies that showed the relationship of VDR gene polymorphism with vitamin D level in hypertensive and normotensive groups. As a result, determining the association of VDR polymorphisms with essential hypertension is expected to aid in the risk assessment for the condition.

7.
J Chem Phys ; 135(18): 184901, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-22088075

ABSTRACT

We have studied the effect of chain topology on the structural properties and diffusion of polymers in a dilute solution in a good solvent. Specifically, we have used three different simulation techniques to compare the chain size and diffusion coefficient of linear and ring polymers in solution. The polymer chain is modeled using a bead-spring representation. The solvent is modeled using three different techniques: molecular dynamics (MD) simulations with a particulate solvent in which hydrodynamic interactions are accounted through the intermolecular interactions, multiparticle collision dynamics (MPCD) with a point particle solvent which has stochastic interactions with the polymer, and the lattice Boltzmann method in which the polymer chains are coupled to the lattice fluid through friction. Our results show that the three methods give quantitatively similar results for the effect of chain topology on the conformation and diffusion behavior of the polymer chain in a good solvent. The ratio of diffusivities of ring and linear polymers is observed to be close to that predicted by perturbation calculations based on the Kirkwood hydrodynamic theory.

8.
J Chem Phys ; 132(23): 234706, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20572733

ABSTRACT

Recent developments in techniques of micro- and nanofluidics have led to an increased interest in nanoscale hydrodynamics in confined geometries. In our previous study [S. C. Kohale and R. Khare, J. Chem. Phys. 129, 164706 (2008)], we analyzed the friction force experienced by a smooth spherical particle that is translating in a fluid confined between parallel plates. The magnitude of three effects--velocity slip at particle surface, the presence of confining surfaces, and the cooperative hydrodynamic interactions between periodic images of the moving particle--that determine the friction force was quantified in that work using molecular dynamics simulations. In this work, we have studied the motion of a rough spherical particle in a confined geometry. Specifically, the friction force experienced by a translating particle and the torque experienced by a rotating particle are studied using molecular dynamics simulations. Our results demonstrate that the surface roughness of the particle significantly reduces the slip at the particle surface, thus leading to higher values of the friction force and hence a better agreement with the continuum predictions. The particle size dependence of the friction force and the torque values is shown to be consistent with the expectations from the continuum theory. As was observed for the smooth sphere, the cooperative hydrodynamic interactions between the images of the sphere have a significant effect on the value of the friction force experienced by the translating sphere. On the other hand, the torque experienced by a spherical particle that is rotating at the channel center is insensitive to this effect.

9.
J Chem Phys ; 130(10): 104904, 2009 Mar 14.
Article in English | MEDLINE | ID: mdl-19292556

ABSTRACT

We use molecular dynamics simulations to study the shear flow of a polymer solution in a nanochannel by using an explicit, atomistic model of the solvent. The length scales representing the chain size, channel size, and the molecular scale structure in these nanochannels are comparable. The diffusion and hydrodynamic interactions in the system are governed by the intermolecular interactions in the explicit solvent model that is used in the simulations. We study the cross stream migration of flexible polymer chains in a solution that is subjected to a planar Couette flow in a nanochannel. We present a detailed study of the effects of chain length, channel size, and solution concentration on the cross stream chain migration process. Our results show that when a dilute solution containing a longer and a shorter chain is subjected to shear flow, the longer chains that are stretched by the flow migrate away from the channel walls, while the shorter chains that do not stretch also do not exhibit this migration behavior. The thickness of the chain depletion layer at the channel surface resulting from cross stream migration is found to increase with an increase in the channel height. On the other hand, this degree of migration away from the channel walls is found to decrease with an increase in the solution concentration. In solutions with concentrations comparable to or greater than the overlap concentration, the depletion layer thickness in shear flow is found to be comparable or slightly smaller than that observed in the absence of flow.


Subject(s)
Models, Chemical , Polymers/chemistry , Rheology , Computer Simulation , Microarray Analysis , Nanotechnology , Solvents
10.
J Chem Phys ; 129(16): 164706, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-19045297

ABSTRACT

We use molecular dynamics simulations to investigate the cooperative hydrodynamic interactions involved in the collective translation of a periodic array of spheres in a fluid which is confined between two atomistic surfaces. In particular, we study a spherical particle that is moving with a constant velocity parallel to the two confining surfaces. This central sphere along with its periodic images forms the translating two dimensional periodic grid. The cooperative hydrodynamic effects between neighboring spheres in the grid are determined by monitoring the friction force experienced by the spheres that are moving through an atomistic solvent. The dependence of the hydrodynamic cooperativity on the grid spacing is quantified by running simulations in systems with different sizes of the periodic box. Our results show a clear evidence of hydrodynamic cooperation between the spherical particles for grid spacing of 90sigma and larger, where sigma is the solvent molecular diameter. These cooperative interactions lead to a reduced value of the friction force experienced by these spheres as opposed to the case for a single sphere moving in an infinite quiescent fluid. The simulated friction force values are compared with the recent continuum mechanics predictions [Bhattacharya, J. Chem. Phys. 128, 074709 (2008)] for the same problem of the motion of a periodic grid of particles through a confined fluid. The simulated values of friction force were found to follow the same qualitative trend as the continuum results but the continuum predictions were consistently larger than the simulation results by approximately 22%. We attribute this difference to the fluid slip at the surface of the spherical particle, as measured in the simulations.

11.
J Phys Chem B ; 122(38): 9022-9031, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30160488

ABSTRACT

A combination of molecular simulations and integral equation theory is applied to predict the χ parameter for polymer blends. The inter- and intramolecular structures of the polymer blends are obtained from molecular dynamics (MD) simulations with atomistic models, which, in turn, are used to calculate the χ parameter using the integral equation theory (χI). This approach was employed to determine the temperature and concentration dependence of χI in the binary blends of atactic polypropylene (aPP)-head-to-head polypropylene (hhPP) and polyethylene (PE)-isotactic polypropylene (iPP), respectively. The χ parameter calculated from this approach (χI) is compared with the χ parameter estimated in the literature from phase equilibrium simulation data for aPP-hhPP blends. In the case of PE-iPP blends, χI is compared with the χ parameter obtained from fitting the structure factor to the random phase approximation. Our approach for calculating χ does not require any fitting, and the only input required for the approach is the radial distribution function which can be calculated from MD simulations. Thus, using this approach in conjunction with atomistic models provides a general methodology for predicting χ parameter of polymeric systems of any chemistry.

12.
J Phys Chem B ; 122(8): 2414-2424, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29397725

ABSTRACT

Atomistically detailed molecular dynamics simulations were used to investigate the temperature dependence of the specific volume, dynamic properties, and viscosity of linear alkyl chain ([CnC1Im][NTf2], n = 3-7) and branched alkyl chain ([(n - 2)mCn-1C1Im][NTf2]) ionic liquids (ILs). The trend of the glass transition temperature (Tg) values obtained in the simulations as a function of the alkyl chain length of cations was similar to the trend seen in experiments. In addition, the system relaxation behavior as determined from the temperature dependence of the diffusion coefficient, rotational relaxation time, and viscosity close to Tg was observed to follow the Vogel-Fulcher-Tammann expression. Furthermore, the reciprocal of the diffusion coefficient of the anion and cation in both linear and branched IL systems showed a linear correlation with viscosity, thus confirming the validity of the Stokes-Einstein relationship for these systems. Similarly, the average rotational relaxation time of the ions was also found to correlate linearly with the viscosity of the ILs over a wide range of temperatures, thereby validating the Debye-Stokes-Einstein relationship for the ILs. These simulation findings suggest that the temperature dependence of the relaxation time of ILs is very similar to that of other glass-forming liquids.

13.
J Phys Chem B ; 121(33): 7963-7977, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28742358

ABSTRACT

A generalized extension of Flory-Rehner (FR) theory is derived to describe equilibrium swelling of polymer networks, including copolymers with two or more chemically distinct repeat units, in either pure or mixed solvents. The model is derived by equating the chemical potential of each solvent in the liquid and gel phases at equilibrium, while assuming the deformation of the network chains is affine. Simplifications of the model are derived for specific cases involving homopolymer networks, copolymer networks, pure solvents, and binary solvent mixtures. With reasonable assumptions, the number of polymer-solvent interaction parameters that must be determined by experiments can be reduced to two effective parameters (θ1 and θ2), which describe the net interactions between water/copolymer (θ1) and ethanol/copolymer (θ2), respectively. Experimental measurements of the swelling of random copolymer networks of n-butyl acrylate and 2-hydroxyethyl acrylate in water, ethanol, and a 100 g/L ethanol/water mixture are utilized to validate the model. For a random copolymer network, θ1 and θ2 can be obtained by fitting the three-component FR model to equilibrium swelling data obtained in the pure solvents. Predicted solvent volume fractions for swelling in water-ethanol mixtures obtained by inserting fitted values of θ1 and θ2 into the four-component FR model are in reasonable agreement with experimental measurements.

14.
Phys Rev E ; 93(1): 012501, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26871112

ABSTRACT

Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique. As shown before for unentangled chains [Karim et al., Phys. Rev. E 86, 051501 (2012)PLEEE81539-375510.1103/PhysRevE.86.051501], the frequency range of applicability is substantially expanded when both particle and medium inertia are properly accounted for by using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used here introduces an entanglement length d_{T}, in addition to those length scales already relevant: monomer bead size d, probe size R, polymer radius of gyration R_{g}, simulation box size L, shear wave penetration length Δ, and wave period Λ. Previously, we demonstrated a number of restrictions necessary to obtain the relevant fluid properties: continuum approximation breaks down when d≳Λ; medium inertia is important and IGSER is required when R≳Λ; and the probe should not experience hydrodynamic interaction with its periodic images, L≳Δ. These restrictions are also observed here. A simple scaling argument for entangled polymers shows that the simulation box size must scale with polymer molecular weight as M_{w}^{3}. Continuum analysis requires the existence of an added mass to the probe particle from the entrained medium but was not observed in the earlier work for unentangled chains. We confirm here that this added mass is necessary only when the thickness L_{S} of the shell around the particle that contains the added mass, L_{S}>d. We also demonstrate that the IGSER can be used to predict particle displacement over a given timescale from knowledge of medium viscoelasticity; such ability will be of interest for designing nanoparticle-based drug delivery.

15.
J Phys Chem B ; 119(44): 14261-9, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26451630

ABSTRACT

Asphalt, a soft matter consisting of more than a thousand chemical species, is of vital importance for the transportation infrastructure, yet it poses significant challenges for microscopic theory and modeling approaches due to its multicomponent nature. Polymeric additives can potentially enhance the thermo-mechanical properties of asphalt, thus helping reduce the road repair costs; rational design of such systems requires knowledge of the molecular structure and dynamics of these systems. We have used molecular dynamics (MD) simulations to investigate the volumetric, structural, and dynamic properties of the neat asphalt as well as styrene-butadiene rubber (SBR) modified asphalt systems. The volume-temperature behavior of the asphalt systems exhibited a glass transition phenomenon, akin to that observed in experiments. The glass transition temperature, room temperature density, and coefficient of volume thermal expansion of the neat asphalt systems so evaluated were in agreement with experimental data when the effect of the high cooling rate used in simulations was accounted for. While the volumetric properties of SBR modified asphalt were found to be insensitive to the presence of the SBR additive, the addition of SBR led to an increase in the aggregation of asphaltene molecules. Furthermore, addition of SBR caused a reduction in the mobility of the constituent molecules of asphalt, with the reduction being more significant for the larger constituent molecules. Similar to other glass forming liquids, the reciprocal of the diffusion coefficient of the selected molecules was observed to follow the Vogel-Fulcher-Tammann (VFT) behavior as a function of temperature. These results suggest the potential for using polymeric additives for enhancing the dynamic mechanical properties of asphalt without affecting its volumetric properties.

16.
J Phys Chem B ; 119(49): 15381-93, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26514915

ABSTRACT

The ability to tune the hydrophilicity of polyacrylate copolymers by altering their composition makes these materials attractive candidates for membranes used to separate alcohol-water mixtures. The separation behavior of these polyacrylate membranes is governed by a complex interplay of factors such as water and alcohol concentrations, water structure in the membrane, polymer hydrophilicity, and temperature. We use molecular dynamics simulations to investigate the effect of polymer hydrophilicity and water concentration on the structure and dynamics of water molecules in the polymer matrix. Samples of poly(n-butyl acrylate) (PBA), poly(2-hydroxyethyl acrylate) (PHEA), and a 50/50 copolymer of BA and HEA were synthesized in laboratory, and their properties were measured. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. Molecular simulations of polyacrylate gels swollen in water and ethanol mixtures showed that water exhibits very different affinities toward the different (carbonyl, alkoxy, and hydroxyl) functional groups of the polymers. Water molecules are well dispersed in the system at low concentrations and predominantly form hydrogen bonds with the polymer. However, water forms large clusters at high concentrations along with the predominant formation of water-water hydrogen bonds and the acceleration of hydrogen bond dynamics.

17.
J Phys Chem B ; 119(47): 14934-44, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26505274

ABSTRACT

A series of branched ionic liquids (ILs) based on the 1-(iso-alkyl)-3-methylimidazolium cation from 1-(1-methylethyl)-3-methylimidazolium bistriflimide to 1-(5-methylhexyl)-3-methylimidazolium bistriflimide and linear ILs based on the 1-(n-alkyl)-3-methylimidazolium cation from 1-propyl-3-methylimidazolium bistriflimide to 1-heptyl-3-methylimidazolum bistriflimide were recently synthesized and their physicochemical properties characterized. For the ILs with the same number of carbons in the alkyl chain, the branched IL was found to have the same density but higher viscosity than the linear one. In addition, the branched IL 1-(2-methylpropyl)-3-methylimidazolium bistriflimide ([2mC3C1Im][NTf2]) was found to have an abnormally high viscosity. Motivated by these experimental observations, the same ILs were studied using molecular dynamics (MD) simulations in the current work. The viscosities of each IL were calculated using the equilibrium MD method at 400 K and the nonequilibrium MD method at 298 K. The results agree with the experimental trend. The ion pair (IP) lifetime, spatial distribution function, and associated potential of mean force, cation size and shape, and interaction energy components were calculated from MD simulations. A quantitative correlation between the liquid structure and the viscosity was observed. Analysis shows that the higher viscosities in the branched ILs are due to the relatively more stable packing between the cations and anions indicated by the lower minima in the potential of mean force (PMF) surface. The abnormal viscosity of [2mC3C1Im][NTf2] was found to be the result of the specific side chain length and molecular structure.

18.
ACS Appl Mater Interfaces ; 6(9): 6098-110, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24606164

ABSTRACT

We have used amido-amine functionalized carbon nanotubes (CNTs) that form covalent bonds with cross-linked epoxy matrices to elucidate the role of the matrix-filler interphase in the enhancement of mechanical and thermal properties in these nanocomposites. For the base case of nanocomposites of cross-linked epoxy and pristine single-walled CNTs, our previous work (Khare, K. S.; Khare, R. J. Phys. Chem. B 2013, 117, 7444-7454) has shown that weak matrix-filler interactions cause the interphase region in the nanocomposite to be more compressible. Furthermore, because of the weak matrix-filler interactions, the nanocomposite containing dispersed pristine CNTs has a glass transition temperature (Tg) that is ∼66 K lower than the neat polymer. In this work, we demonstrate that in spite of the presence of stiff CNTs in the nanocomposite, the Young's modulus of the nanocomposite containing dispersed pristine CNTs is virtually unchanged compared to the neat cross-linked epoxy. This observation suggests that the compressibility of the matrix-filler interphase interferes with the ability of the CNTs to reinforce the matrix. Furthermore, when the compressibility of the interphase is reduced by the use of amido-amine functionalized CNTs, the mechanical reinforcement due to the filler is more effective, resulting in a ∼50% increase in the Young's modulus compared to the neat cross-linked epoxy. Correspondingly, the functionalization of the CNTs also led to a recovery in the Tg making it effectively the same as the neat polymer and also resulted in a ∼12% increase in the thermal conductivity of the nanocomposite containing functionalized CNTs compared to that containing pristine CNTs. These results demonstrate that the functionalization of the CNTs facilitates the transfer of both mechanical load and thermal energy across the matrix-filler interface.

19.
J Phys Chem B ; 117(24): 7444-54, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23691970

ABSTRACT

We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.


Subject(s)
Cross-Linking Reagents/chemistry , Epoxy Compounds/chemistry , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Glass/chemistry , Models, Molecular , Molecular Structure , Polymers/chemistry , Transition Temperature
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 1): 051501, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23214783

ABSTRACT

We present a technique for the determination of viscoelastic properties of a medium by tracking the motion of an embedded probe particle by using molecular dynamics simulations. The approach involves the analysis of the simulated particle motion by continuum theory; it is shown to work in both passive and active modes. We demonstrate that, for passive rheology, an analysis based on the generalized Stokes-Einstein relationship is not adequate to obtain the values of the viscoelastic moduli over the frequency range studied. For both passive and active modes, it is necessary to account for the medium and particle inertia when analyzing the particle motion. For a polymer melt system consisting of short chains, the values calculated from the proposed approach are in good quantitative agreement with previous literature results that were obtained using completely different simulation approaches. The proposed particle rheology simulation technique is general and could provide insight into the characterization of the mechanical properties in biological systems, such as cellular environments and polymeric systems, such as thin films and nanocomposites that exhibit spatial variation in properties over the nanoscale.


Subject(s)
Models, Chemical , Models, Molecular , Molecular Probe Techniques , Molecular Probes/analysis , Molecular Probes/chemistry , Rheology/methods , Computer Simulation , Elastic Modulus , Motion , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL