Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(5): 671-678, 2022 05.
Article in English | MEDLINE | ID: mdl-35487986

ABSTRACT

The T cell-specific DNA-binding protein TCF-1 is a central regulator of T cell development and function along multiple stages and lineages. Because it interacts with ß-catenin, TCF-1 has been classically viewed as a downstream effector of canonical Wnt signaling, although there is strong evidence for ß-catenin-independent TCF-1 functions. TCF-1 co-binds accessible regulatory regions containing or lacking its conserved motif and cooperates with other nuclear factors to establish context-dependent epigenetic and transcription programs that are essential for T cell development and for regulating immune responses to infection, autoimmunity and cancer. Although it has mostly been associated with positive regulation of chromatin accessibility and gene expression, TCF-1 has the potential to reduce chromatin accessibility and thereby suppress gene expression. In addition, the binding of TCF-1 bends the DNA and affects the chromatin conformation genome wide. This Review discusses the current understanding of the multiple roles of TCF-1 in T cell development and function and their mechanistic underpinnings.


Subject(s)
Wnt Proteins , beta Catenin , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , Wnt Proteins/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
2.
Nat Immunol ; 22(9): 1152-1162, 2021 09.
Article in English | MEDLINE | ID: mdl-34385712

ABSTRACT

The transcription factor TCF-1 is essential for the development and function of regulatory T (Treg) cells; however, its function is poorly understood. Here, we show that TCF-1 primarily suppresses transcription of genes that are co-bound by Foxp3. Single-cell RNA-sequencing analysis identified effector memory T cells and central memory Treg cells with differential expression of Klf2 and memory and activation markers. TCF-1 deficiency did not change the core Treg cell transcriptional signature, but promoted alternative signaling pathways whereby Treg cells became activated and gained gut-homing properties and characteristics of the TH17 subset of helper T cells. TCF-1-deficient Treg cells strongly suppressed T cell proliferation and cytotoxicity, but were compromised in controlling CD4+ T cell polarization and inflammation. In mice with polyposis, Treg cell-specific TCF-1 deficiency promoted tumor growth. Consistently, tumor-infiltrating Treg cells of patients with colorectal cancer showed lower TCF-1 expression and increased TH17 expression signatures compared to adjacent normal tissue and circulating T cells. Thus, Treg cell-specific TCF-1 expression differentially regulates TH17-mediated inflammation and T cell cytotoxicity, and can determine colorectal cancer outcome.


Subject(s)
Colonic Neoplasms/pathology , Hepatocyte Nuclear Factor 1-alpha/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/immunology , Animals , Cell Proliferation/physiology , Forkhead Transcription Factors/immunology , Gene Expression Regulation/genetics , Gene Expression Regulation/immunology , Hepatocyte Nuclear Factor 1-alpha/genetics , Immunologic Memory/immunology , Inflammation/immunology , Membrane Proteins/metabolism , Mice , Mice, Knockout , Transcription, Genetic/genetics , Tumor Suppressor Proteins/metabolism
3.
Nat Immunol ; 22(4): 471-484, 2021 04.
Article in English | MEDLINE | ID: mdl-33664518

ABSTRACT

The diversity of regulatory T (Treg) cells in health and in disease remains unclear. Individuals with colorectal cancer harbor a subpopulation of RORγt+ Treg cells with elevated expression of ß-catenin and pro-inflammatory properties. Here we show progressive expansion of RORγt+ Treg cells in individuals with inflammatory bowel disease during inflammation and early dysplasia. Activating Wnt-ß-catenin signaling in human and murine Treg cells was sufficient to recapitulate the disease-associated increase in the frequency of RORγt+ Treg cells coexpressing multiple pro-inflammatory cytokines. Binding of the ß-catenin interacting partner, TCF-1, to DNA overlapped with Foxp3 binding at enhancer sites of pro-inflammatory pathway genes. Sustained Wnt-ß-catenin activation induced newly accessible chromatin sites in these genes and upregulated their expression. These findings indicate that TCF-1 and Foxp3 together limit the expression of pro-inflammatory genes in Treg cells. Activation of ß-catenin signaling interferes with this function and promotes the disease-associated RORγt+ Treg phenotype.


Subject(s)
Cell Proliferation , Cellular Reprogramming , Colitis, Ulcerative/metabolism , Colitis-Associated Neoplasms/metabolism , Crohn Disease/metabolism , Epigenesis, Genetic , Lymphocyte Activation , T-Lymphocytes, Regulatory/metabolism , Wnt Signaling Pathway , Animals , Case-Control Studies , Cells, Cultured , Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Colitis-Associated Neoplasms/genetics , Colitis-Associated Neoplasms/immunology , Crohn Disease/genetics , Crohn Disease/immunology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation, Neoplastic , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Humans , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Phenotype , T Cell Transcription Factor 1 , T-Lymphocytes, Regulatory/immunology
4.
Nat Immunol ; 19(12): 1366-1378, 2018 12.
Article in English | MEDLINE | ID: mdl-30420627

ABSTRACT

Thymocyte development requires a complex orchestration of multiple transcription factors. Ablating either TCF-1 or HEB in CD4+CD8+ thymocytes elicits similar developmental outcomes including increased proliferation, decreased survival, and fewer late Tcra rearrangements. Here, we provide a mechanistic explanation for these similarities by showing that TCF-1 and HEB share ~7,000 DNA-binding sites genome wide and promote chromatin accessibility. The binding of both TCF-1 and HEB was required at these shared sites for epigenetic and transcriptional gene regulation. Binding of TCF-1 and HEB to their conserved motifs in the enhancer regions of genes associated with T cell differentiation promoted their expression. Binding to sites lacking conserved motifs in the promoter regions of cell-cycle-associated genes limited proliferation. TCF-1 displaced nucleosomes, allowing for chromatin accessibility. Importantly, TCF-1 inhibited Notch signaling and consequently protected HEB from Notch-mediated proteasomal degradation. Thus, TCF-1 shifts nucleosomes and safeguards HEB, thereby enabling their cooperation in establishing the epigenetic and transcription profiles of CD4+CD8+ thymocytes.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , Gene Expression Regulation/immunology , Hepatocyte Nuclear Factor 1-alpha/immunology , Lymphopoiesis/immunology , Thymocytes/immunology , Animals , CD4 Antigens/immunology , CD8 Antigens/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic
5.
Proc Natl Acad Sci U S A ; 119(32): e2201493119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35921443

ABSTRACT

Understanding the mechanisms promoting chromosomal translocations of the rearranging receptor loci in leukemia and lymphoma remains incomplete. Here we show that leukemias induced by aberrant activation of ß-catenin in thymocytes, which bear recurrent Tcra/Myc-Pvt1 translocations, depend on Tcf-1. The DNA double strand breaks (DSBs) in the Tcra site of the translocation are Rag-generated, whereas the Myc-Pvt1 DSBs are not. Aberrantly activated ß-catenin redirects Tcf-1 binding to novel DNA sites to alter chromatin accessibility and down-regulate genome-stability pathways. Impaired homologous recombination (HR) DNA repair and replication checkpoints lead to retention of DSBs that promote translocations and transformation of double-positive (DP) thymocytes. The resulting lymphomas, which resemble human T cell acute lymphoblastic leukemia (T-ALL), are sensitive to PARP inhibitors (PARPis). Our findings indicate that aberrant ß-catenin signaling contributes to translocations in thymocytes by guiding Tcf-1 to promote the generation and retention of replication-induced DSBs allowing their coexistence with Rag-generated DSBs. Thus, PARPis could offer therapeutic options in hematologic malignancies with active Wnt/ß-catenin signaling.


Subject(s)
Cell Transformation, Neoplastic , Genomic Instability , Hepatocyte Nuclear Factor 1-alpha , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Thymocytes , Translocation, Genetic , beta Catenin , Animals , Cell Transformation, Neoplastic/genetics , DNA Breaks, Double-Stranded , Genomic Instability/genetics , Hepatocyte Nuclear Factor 1-alpha/genetics , Hepatocyte Nuclear Factor 1-alpha/metabolism , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-myc/genetics , RNA, Long Noncoding/genetics , Thymocytes/pathology , Translocation, Genetic/genetics , beta Catenin/genetics , beta Catenin/metabolism
6.
Semin Cancer Biol ; 78: 1-4, 2022 01.
Article in English | MEDLINE | ID: mdl-34990835

ABSTRACT

In this thematic issue, several mechanisms of tumor dormancy and relapse are discussed. The reviews suggest mutual interactions and communications between malignant cells and other cells in their niche during tumor dormancy. Nevertheless, a complete understanding of tumor dormancy remains elusive. This is because we are getting lost in details of cell-intrinsic and cell-extrinsic molecular pathways without being able to discover the pattern of tumor dormancy. Here, we discuss some conceptual frameworks and methodological approaches that facilitate pattern recognition of tumor dormancy, and propose that settling on certain biological scale such as mitochondria would be the key to discover the pattern of tumor dormancy and relapse.


Subject(s)
Disease Susceptibility , Neoplasms/etiology , Neoplasms/metabolism , Signal Transduction , Tumor Microenvironment , Biomarkers , Cell Cycle , Humans , Neoplasms/pathology , Recurrence
7.
Nature ; 530(7589): 184-9, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26840489

ABSTRACT

Cellular senescence, a stress-induced irreversible growth arrest often characterized by expression of p16(Ink4a) (encoded by the Ink4a/Arf locus, also known as Cdkn2a) and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time, and have been speculated to have a role in ageing. To explore the physiological relevance and consequences of naturally occurring senescent cells, here we use a previously established transgene, INK-ATTAC, to induce apoptosis in p16(Ink4a)-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. We show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. The clearance of p16(Ink4a)-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Thus, p16(Ink4a)-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in several organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.


Subject(s)
Aging/pathology , Aging/physiology , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Health , Longevity/physiology , Adipocytes/cytology , Adipocytes/pathology , Adipocytes/physiology , Animals , Apoptosis , Cell Separation , Cell Transformation, Neoplastic/pathology , Epithelial Cells/cytology , Epithelial Cells/pathology , Female , Kidney/cytology , Kidney/pathology , Kidney/physiology , Kidney/physiopathology , Lipodystrophy/pathology , Male , Mice , Myocardium/cytology , Myocardium/metabolism , Myocardium/pathology , Organ Specificity , Stem Cells/cytology , Stem Cells/pathology , Time Factors
8.
Proc Natl Acad Sci U S A ; 116(48): 24285-24295, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31712445

ABSTRACT

Sporadic colorectal cancer (CRC) is a result of complex interactions between the host and its environment. Environmental stressors act by causing host cell DNA alterations implicated in the onset of cancer. Here we investigate the stressor ability of CRC-associated gut dysbiosis as causal agent of host DNA alterations. The epigenetic nature of these alterations was investigated in humans and in mice. Germ-free mice receiving fecal samples from subjects with normal colonoscopy or from CRC patients were monitored for 7 or 14 wk. Aberrant crypt foci, luminal microbiota, and DNA alterations (colonic exome sequencing and methylation patterns) were monitored following human feces transfer. CRC-associated microbiota induced higher numbers of hypermethylated genes in murine colonic mucosa (vs. healthy controls' microbiota recipients). Several gene promoters including SFRP1,2,3, PENK, NPY, ALX4, SEPT9, and WIF1 promoters were found hypermethylated in CRC but not in normal tissues or effluents from fecal donors. In a pilot study (n = 266), the blood methylation levels of 3 genes (Wif1, PENK, and NPY) were shown closely associated with CRC dysbiosis. In a validation study (n = 1,000), the cumulative methylation index (CMI) of these genes was significantly higher in CRCs than in controls. Further, CMI appeared as an independent risk factor for CRC diagnosis as shown by multivariate analysis that included fecal immunochemical blood test. Consequently, fecal bacterial species in individuals with higher CMI in blood were identified by whole metagenomic analysis. Thus, CRC-related dysbiosis induces methylation of host genes, and corresponding CMIs together with associated bacteria are potential biomarkers for CRC.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology , Epigenesis, Genetic , Gastrointestinal Microbiome/genetics , Animals , Cohort Studies , DNA Methylation , Dysbiosis/genetics , Dysbiosis/microbiology , Dysbiosis/pathology , Fecal Microbiota Transplantation , Feces/microbiology , Female , Gene Expression Regulation , Germ-Free Life , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Male , Mice, Inbred C3H , Promoter Regions, Genetic , RNA, Ribosomal, 16S
9.
Proc Natl Acad Sci U S A ; 115(7): 1588-1592, 2018 02 13.
Article in English | MEDLINE | ID: mdl-29429965

ABSTRACT

Mast cells (MCs) are tissue resident sentinels that mature and orchestrate inflammation in response to infection and allergy. While they are also frequently observed in tumors, the contribution of MCs to carcinogenesis remains unclear. Here, we show that sequential oncogenic events in gut epithelia expand different types of MCs in a temporal-, spatial-, and cytokine-dependent manner. The first wave of MCs expands focally in benign adenomatous polyps, which have elevated levels of IL-10, IL-13, and IL-33, and are rich in type-2 innate lymphoid cells (ILC2s). These vanguard MCs adhere to the transformed epithelial cells and express murine mast cell protease 2 (mMCP2; a typical mucosal MC protease) and, to a lesser extent, the connective tissue mast cell (CTMC) protease mMCP6. Persistence of MCs is strictly dependent on T cell-derived IL-10, and their loss in the absence of IL-10-expressing T cells markedly delays small bowel (SB) polyposis. MCs expand profusely in polyposis-prone mice when T cells overexpress IL-10. The frequency of polyp-associated MCs is unaltered in response to broad-spectrum antibiotics, arguing against a microbial component driving their recruitment. Intriguingly, when polyps become invasive, a second wave of mMCP5+/mMCP6+ CTMCs expands in the tumor stroma and at invasive tumor borders. Ablation of mMCP6 expression attenuates polyposis, but invasive properties of the remaining lesions remain intact. Our findings argue for a multistep process in SB carcinogenesis in which distinct MC subsets, and their elaborated proteases, guide disease progression.


Subject(s)
Chymases/metabolism , Cytokines/metabolism , Intestinal Neoplasms/pathology , Intestine, Small/pathology , Lymphocytes/pathology , Mast Cells/pathology , Mucous Membrane/pathology , Animals , Cells, Cultured , Intestinal Neoplasms/immunology , Intestinal Neoplasms/metabolism , Intestine, Small/immunology , Intestine, Small/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Mucous Membrane/immunology , Mucous Membrane/metabolism , Neoplasm Staging
10.
J Immunol ; 199(9): 3348-3359, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28939757

ABSTRACT

The interactions between programmed death-1 (PD-1) and its ligands hamper tumor-specific CD8+ T cell (TCD8) responses, and PD-1-based "checkpoint inhibitors" have shown promise in certain cancers, thus revitalizing interest in immunotherapy. PD-1-targeted therapies reverse TCD8 exhaustion/anergy. However, whether they alter the epitope breadth of TCD8 responses remains unclear. This is an important question because subdominant TCD8 are more likely than immunodominant clones to escape tolerance mechanisms and may contribute to protective anticancer immunity. We have addressed this question in an in vivo model of TCD8 responses to well-defined epitopes of a clinically relevant oncoprotein, large T Ag. We found that unlike other coinhibitory molecules (CTLA-4, LAG-3, TIM-3), PD-1 was highly expressed by subdominant TCD8, which correlated with their propensity to favorably respond to PD-1/PD-1 ligand-1 (PD-L1)-blocking Abs. PD-1 blockade increased the size of subdominant TCD8 clones at the peak of their primary response, and it also sustained their presence, thus giving rise to an enlarged memory pool. The expanded population was fully functional as judged by IFN-γ production and MHC class I-restricted cytotoxicity. The selective increase in subdominant TCD8 clonal size was due to their enhanced survival, not proliferation. Further mechanistic studies utilizing peptide-pulsed dendritic cells, recombinant vaccinia viruses encoding full-length T Ag or epitope mingenes, and tumor cells expressing T Ag variants revealed that anti-PD-1 invigorates subdominant TCD8 responses by relieving their lysis-dependent suppression by immunodominant TCD8 To our knowledge, our work constitutes the first report that interfering with PD-1 signaling potentiates epitope spreading in tumor-specific responses, a finding with clear implications for cancer immunotherapy and vaccination.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes/immunology , Immunity, Cellular , Neoplasm Proteins/immunology , Neoplasms, Experimental/immunology , Programmed Cell Death 1 Receptor/immunology , Signal Transduction/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Death/genetics , Cell Death/immunology , Cell Line, Tumor , Epitopes/genetics , Female , Interferon-gamma/genetics , Interferon-gamma/immunology , Mice , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Programmed Cell Death 1 Receptor/genetics , Signal Transduction/genetics
11.
Cancer Immunol Immunother ; 67(1): 13-23, 2018 01.
Article in English | MEDLINE | ID: mdl-28875329

ABSTRACT

The transcription factor signal activator and transducer or transcription (STAT3), which regulates genes controlling proliferation, survival, and invasion, is activated inappropriately in many human cancers, including breast cancer. Activation of STAT3 can lead to both malignant cellular behavior and suppression of immune cell function in the tumor microenvironment. Through a chemical-biology screen, pyrimethamine (PYR), an FDA approved anti-microbial drug, was identified as an inhibitor of STAT3 function at concentrations known to be achieved safely in humans. We report that PYR shows therapeutic activity in two independent mouse models of breast cancer, with both direct tumor inhibitory and immune stimulatory effects. PYR-inhibited STAT3 activity in TUBO and TM40D-MB metastatic breast cancer cells in vitro and inhibited tumor cell proliferation and invasion into Matrigel basement membrane matrix. In tumor-transplanted mice, PYR had both direct and indirect tumor inhibitory effects. Tumor-bearing mice treated with PYR showed reduced STAT3 activation in tumor cells, attenuated tumor growth, and reduced tumor-associated inflammation. In addition, expression of Lamp1 by tumor infiltrating CD8+ T cells was elevated, indicating enhanced release of cytotoxic granules. These findings suggest that PYR may have beneficial effects in the treatment of breast cancer.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Anti-Infective Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , CD8-Positive T-Lymphocytes/immunology , Pyrimethamine/therapeutic use , STAT3 Transcription Factor/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cytotoxicity, Immunologic , Disease Models, Animal , Female , Humans , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Neoplasm Transplantation , Pyrimethamine/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Tumor Escape , United States
12.
Cancer Immunol Immunother ; 66(12): 1563-1575, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28798979

ABSTRACT

Mucosa-associated invariant T (MAIT) cells are innate-like T lymphocytes that are unusually abundant in the human liver, a common site of colorectal carcinoma (CRC) metastasis. However, whether they contribute to immune surveillance against colorectal liver metastasis (CRLM) is essentially unexplored. In addition, whether MAIT cell functions can be impacted by chemotherapy is unclear. These are important questions given MAIT cells' potent immunomodulatory and inflammatory properties. Herein, we examined the frequencies and functions of peripheral blood, healthy liver tissue, tumor-margin and tumor-infiltrating MAIT cells in 21 CRLM patients who received no chemotherapy, FOLFOX, or a combination of FOLFOX and Avastin before they underwent liver resection. We found that MAIT cells, defined as CD3ε+Vα7.2+CD161++ or CD3ε+MR1 tetramer+ cells, were present within both healthy and tumor-afflicted hepatic tissues. Paired and grouped analyses of samples revealed the physical proximity of MAIT cells to metastatic lesions to drastically influence their functional competence. Accordingly, unlike those residing in the healthy liver compartment, tumor-infiltrating MAIT cells failed to produce IFN-γ in response to a panel of TCR and cytokine receptor ligands, and tumor-margin MAIT cells were only partially active. Furthermore, chemotherapy did not account for intratumoral MAIT cell insufficiencies. Our findings demonstrate for the first time that CRLM-penetrating MAIT cells exhibit wide-ranging functional impairments, which are dictated by their physical location but not by preoperative chemotherapy. Therefore, we propose that MAIT cells may provide an attractive therapeutic target in CRC and that their ligands may be combined with chemotherapeutic agents to treat CRLM.


Subject(s)
Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Mucosal-Associated Invariant T Cells/immunology , Adult , Aged , Aged, 80 and over , Female , Humans , Immunity, Mucosal , Male , Middle Aged , Mucosal-Associated Invariant T Cells/pathology , Neoplasm Metastasis , Tumor Microenvironment
13.
J Biol Chem ; 290(39): 23838-49, 2015 Sep 25.
Article in English | MEDLINE | ID: mdl-26245900

ABSTRACT

In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis/physiology , Membrane Proteins/metabolism , Mutation, Missense , Proto-Oncogene Proteins/metabolism , STAT3 Transcription Factor/metabolism , Up-Regulation/physiology , bcl-X Protein/biosynthesis , ras Proteins/metabolism , Amino Acid Substitution , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , Cell Line, Tumor , Gene Knockdown Techniques , Humans , Interleukin-6/genetics , Interleukin-6/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Membrane Proteins/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins p21(ras) , STAT3 Transcription Factor/genetics , Up-Regulation/drug effects , bcl-X Protein/genetics , ras Proteins/genetics
14.
Biol Reprod ; 95(3): 62, 2016 09.
Article in English | MEDLINE | ID: mdl-27488034

ABSTRACT

Endometriosis is a highly prevalent, chronic, heterogeneous, fibro-inflammatory disease that remains recalcitrant to conventional therapy. We previously showed that loss of KLF11, a transcription factor implicated in uterine disease, results in progression of endometriosis. Despite extensive homology, co-expression, and human disease association, loss of the paralog Klf10 causes a unique inflammatory, cystic endometriosis phenotype in contrast to fibrotic progression seen with loss of Klf11. We identify here for the first time a novel role for KLF10 in endometriosis. In an animal endometriosis model, unlike wild-type controls, Klf10(-/-) animals developed cystic lesions with massive immune infiltrate and minimal peri-lesional fibrosis. The Klf10(-/-) disease progression phenotype also contrasted with prolific fibrosis and minimal immune cell infiltration seen in Klf11(-/-) animals. We further found that lesion genotype rather than that of the host determined each unique disease progression phenotype. Mechanistically, KLF10 regulated CD40/CD154-mediated immune pathways. Both inflammatory as well as fibrotic phenotypes are the commonest clinical manifestations in chronic fibro-inflammatory diseases such as endometriosis. The complementary, paralogous Klf10 and Klf11 models therefore offer novel insights into the mechanisms of inflammation and fibrosis in a disease-relevant context. Our data suggests that divergence in underlying gene dysregulation critically determines disease-phenotype predominance rather than the conventional paradigm of inflammation being precedent to fibrotic scarring. Heterogeneity in clinical progression and treatment response are thus likely from disparate gene regulation profiles. Characterization of disease phenotype-associated gene dysregulation offers novel approaches for developing targeted, individualized therapy for recurrent and recalcitrant chronic disease.


Subject(s)
CD40 Antigens/metabolism , CD40 Ligand/metabolism , Early Growth Response Transcription Factors/genetics , Endometriosis/genetics , Endometrium/metabolism , Epigenesis, Genetic , Kruppel-Like Transcription Factors/genetics , Adolescent , Adult , Animals , Cell Line , Disease Models, Animal , Disease Progression , Early Growth Response Transcription Factors/metabolism , Endometriosis/metabolism , Endometriosis/pathology , Endometrium/pathology , Female , Gene Expression Regulation , Humans , Kruppel-Like Transcription Factors/metabolism , Mice , Middle Aged , Minute Virus of Mice , Young Adult
15.
Int J Mol Sci ; 17(12)2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27918452

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is associated with the modern lifestyle. Chronic alcohol consumption-a frequent habit of majority of modern societies-increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC. Here we assess the effect of circadian disruption-another modern life style habit-in promoting alcohol-associated CRC. METHOD: TS4Cre × adenomatous polyposis coli (APC)lox468 mice underwent (a) an alcohol-containing diet while maintained on a normal 12 h light:12 h dark cycle; or (b) an alcohol-containing diet in conjunction with circadian disruption by once-weekly 12 h phase reversals of the light:dark (LD) cycle. Mice were sacrificed after eight weeks of full alcohol and/or LD shift to collect intestine samples. Tumor number, size, and histologic grades were compared between animal groups. Mast cell protease 2 (MCP2) and 6 (MCP6) histology score were analyzed and compared. Stool collected at baseline and after four weeks of experimental manipulations was used for microbiota analysis. RESULTS: The combination of alcohol and LD shifting accelerated intestinal polyposis, with a significant increase in polyp size, and caused advanced neoplasia. Consistent with a pathogenic role of stromal tryptase-positive mast cells in colon carcinogenesis, the ratio of mMCP6 (stromal)/mMCP2 (intraepithelial) mast cells increased upon LD shifting. Baseline microbiota was similar between groups, and experimental manipulations resulted in a significant difference in the microbiota composition between groups. CONCLUSIONS: Circadian disruption by Light:dark shifting exacerbates alcohol-induced polyposis and CRC. Effect of circadian disruption could, at least partly, be mediated by promoting a pro-tumorigenic inflammatory milieu via changes in microbiota.


Subject(s)
Alcoholism/complications , Carcinogenesis/pathology , Colorectal Neoplasms/etiology , Inflammation/pathology , Intestines/microbiology , Intestines/pathology , Microbiota , Photoperiod , Animals , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Dysbiosis/complications , Dysbiosis/microbiology , Dysbiosis/pathology , Epithelial Cells/pathology , Feeding Behavior , Mast Cells/pathology , Mice
16.
Cancer Immunol Immunother ; 64(9): 1185-91, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26047578

ABSTRACT

OBJECTIVES: Lung cancer is the leading cause of cancer-related death in the USA. Regulatory T cells (Tregs) normally function to temper immune responses and decrease inflammation. Previous research has demonstrated different subsets of Tregs with contrasting anti- or pro-inflammatory properties. This study aimed to determine Treg subset distributions and characteristics present in non-small cell lung cancer (NSCLC) patients. METHODS: Peripheral blood was collected from healthy controls (HC) and NSCLC patients preceding surgical resection, and mononuclear cells were isolated, stained, and analyzed by flow cytometry. Tregs were defined by expression of CD4 and CD25 and classified into CD45RA(+)Foxp3(int) (naïve, Fr. I) or CD45RA(-)Foxp3(hi) (activated Fr. II). Activated conventional T cells were CD4(+)CD45RA(-)Foxp3(int) (Fr. III). RESULTS: Samples from 23 HC and 26 NSCLC patients were collected. Tregs isolated from patients with NSCLC were found to have enhanced suppressive function on naive T cells. Cancer patients had significantly increased frequencies of activated Tregs (fraction II: FrII), 17.5 versus 3.2% (P < 0.001). FrII Tregs demonstrated increased RORγt and IL17 expression and decreased IL10 expression compared to Tregs from HC, indicating pro-inflammatory characteristics. CONCLUSIONS: This study demonstrates that a novel subset of Tregs with pro-inflammatory characteristics preferentially expand in NSCLC patients. This Treg subset appears identical to previously reported pro-inflammatory Tregs in human colon cancer patients and in mouse models of polyposis. We expect the pro-inflammatory Tregs in lung cancer to contribute to the immune pathogenesis of disease and propose that targeting this Treg subset may have protective benefits in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Lung Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Aged , Female , Humans , Lymphocyte Activation , Male
17.
Radiology ; 274(1): 192-200, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25222066

ABSTRACT

PURPOSE: To test the following hypotheses in a murine model of pancreatic cancer: (a) Vaccination with antigen-loaded iron-labeled dendritic cells reduces T2-weighted signal intensity at magnetic resonance (MR) imaging within peripheral draining lymph nodes ( LN lymph node s) and (b) such signal intensity reductions are associated with tumor size changes after dendritic cell vaccination. MATERIALS AND METHODS: The institutional animal care and use committee approved this study. Panc02 cells were implanted into the flanks of 27 C57BL/6 mice bilaterally. After tumors reached 10 mm, cell viability was evaluated, and iron-labeled dendritic cell vaccines were injected into the left hind footpad. The mice were randomly separated into the following three groups (n = 9 in each): Group 1 was injected with 1 million iron-labeled dendritic cells; group 2, with 2 million cells; and control mice, with 200 mL of phosphate-buffered saline. T1- and T2-weighted MR imaging of labeled dendritic cell migration to draining LN lymph node s was performed before cell injection and 6 and 24 hours after injection. The signal-to-noise ratio ( SNR signal-to-noise ratio ) of the draining LN lymph node s was measured. One-way analysis of variance ( ANOVA analysis of variance ) was used to compare Prussian blue-positive dendritic cell measurements in LN lymph node s. Repeated-measures ANOVA analysis of variance was used to compare in vivo T2-weighted SNR signal-to-noise ratio LN lymph node measurements between groups over the observation time points. RESULTS: Trypan blue assays showed no significant difference in mean viability indexes (unlabeled vs labeled dendritic cells, 4.32% ± 0.69 [standard deviation] vs 4.83% ± 0.76; P = .385). Thirty-five days after injection, the mean left and right flank tumor sizes, respectively, were 112.7 mm(2) ± 16.4 and 109 mm(2) ± 24.3 for the 1-million dendritic cell group, 92.2 mm(2) ± 9.9 and 90.4 mm(2) ± 12.8 for the 2-million dendritic cell group, and 193.7 mm(2) ± 20.9 and 189.4 mm(2) ± 17.8 for the control group (P = .0001 for control group vs 1-million cell group; P = .00007 for control group vs 2-million cell group). There was a correlation between postinjection T2-weighted SNR signal-to-noise ratio decreases in the left popliteal LN lymph node 24 hours after injection and size changes at follow-up for tumors in both flanks (R = 0.81 and R = 0.76 for left and right tumors, respectively). CONCLUSION: MR imaging approaches can be used for quantitative measurement of accumulated iron-labeled dendritic cell-based vaccines in draining LN lymph node s. The amount of dendritic cell-based vaccine in draining LN lymph node s correlates well with observed protective effects.


Subject(s)
Adenocarcinoma/immunology , Adenocarcinoma/pathology , Antigens/immunology , Cell Movement , Dendritic Cells/immunology , Magnetic Resonance Imaging/methods , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Adaptive Immunity , Animals , Cell Line, Tumor , Dextrans/pharmacology , Disease Models, Animal , Image Processing, Computer-Assisted , Magnetite Nanoparticles , Mice , Microscopy, Fluorescence , Vaccination
19.
Proc Natl Acad Sci U S A ; 109(26): 10462-7, 2012 Jun 26.
Article in English | MEDLINE | ID: mdl-22689992

ABSTRACT

An imbalance of commensal bacteria and their gene products underlies mucosal and, in particular, gastrointestinal inflammation and a predisposition to cancer. Lactobacillus species have received considerable attention as examples of beneficial microbiota. We have reported previously that deletion of the phosphoglycerol transferase gene that is responsible for lipoteichoic acid (LTA) biosynthesis in Lactobacillus acidophilus (NCK2025) rendered this bacterium able to significantly protect mice against induced colitis when delivered orally. Here we report that oral treatment with LTA-deficient NCK2025 normalizes innate and adaptive pathogenic immune responses and causes regression of established colonic polyps. This study reveals the proinflammatory role of LTA and the ability of LTA-deficient L. acidophilus to regulate inflammation and protect against colonic polyposis in a unique mouse model.


Subject(s)
Adenomatous Polyposis Coli/immunology , Lactobacillus acidophilus/genetics , Lipopolysaccharides/genetics , Teichoic Acids/genetics , Adenomatous Polyposis Coli/pathology , Animals , Mice , T-Lymphocytes, Regulatory/immunology
20.
Proc Natl Acad Sci U S A ; 109(18): E1082-91, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22451924

ABSTRACT

To address the role of Tpl2, a MAP3K8 that regulates innate/adaptive immunity and inflammation, in intestinal tumorigenesis, we crossed a Tpl2 KO allele into the Apc(min/+) genetic background. Here, we show that Apc(min/+)/Tpl2(-/-) mice exhibit a fivefold increase in the number of intestinal adenomas. Bone marrow transplantation experiments revealed that the enhancement of polyposis was partially hematopoietic cell-driven. Consistent with this observation, Tpl2 ablation promoted intestinal inflammation. IL-10 levels and regulatory T-cell numbers were lower in the intestines of Tpl2(-/-) mice, independent of Apc and polyp status, suggesting that they were responsible for the initiation of the enhancement of tumorigenesis caused by the ablation of Tpl2. The low IL-10 levels correlated with defects in mTOR activation and Stat3 phosphorylation in Toll-like receptor-stimulated macrophages and with a defect in inducible regulatory T-cell generation and function. Both polyp numbers and inflammation increased progressively with time. The rate of increase of both, however, was more rapid in Apc(min/+)/Tpl2(-/-) mice, suggesting that the positive feedback initiated by inflammatory signals originating in developing polyps is more robust in these mice. This may be because these mice have a higher intestinal polyp burden as a result of the enhancement of tumor initiation.


Subject(s)
Genes, APC , Inflammatory Bowel Diseases/etiology , Interleukin-10/biosynthesis , Intestinal Neoplasms/etiology , MAP Kinase Kinase Kinases/deficiency , Proto-Oncogene Proteins/deficiency , T-Lymphocytes, Regulatory/immunology , Adenoma/etiology , Adenoma/genetics , Adenoma/immunology , Animals , Bone Marrow Transplantation , Female , Gene Expression , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology , Intestinal Neoplasms/genetics , Intestinal Neoplasms/immunology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Models, Immunological , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL