Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373393

ABSTRACT

Amongst the most prevalent malignancies worldwide, head and neck squamous cell carcinoma (HNSCC) is characterized by high morbidity and mortality. The failure of standard treatment modalities, such as surgery, radiotherapy, and chemotherapy, demands the need for in-depth understanding of the complex signaling networks involved in the development of treatment resistance. A tumor's invasive growth and high levels of intrinsic or acquired treatment resistance are the primary causes of treatment failure. This may be a result of the presence of HNSCC's cancer stem cells, which are known to have self-renewing capabilities that result in therapeutic resistance. Using bioinformatics methods, we discovered that elevated expressions of MET, STAT3, and AKT were associated with poor overall survival in HNSCC patients. We then evaluated the therapeutic potential of our newly synthesized small molecule HNC018 towards its potential as a novel anticancer drug. Our computer-aided structure characterization and target identification study predicted that HNC018 could target these oncogenic markers implicated in HNSCC. Subsequently, the HNC018 has demonstrated its anti-proliferative and anticancer activities towards the head and neck squamous cell carcinoma cell lines, along with displaying the stronger binding affinities towards the MET, STAT3, and AKT than the standard drug cisplatin. Reduction in the clonogenic and tumor-sphere-forming ability displays HNC018's role in decreasing the tumorigenicity. Importantly, an vivo study has shown a significant delay in tumor growth in HNC018 alone or in combination with cisplatin-treated xenograft mice model. Collectively with our findings, HNC018 highlights the desirable properties of a drug-like candidate and could be considered as a novel small molecule for treating head and neck squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Animals , Mice , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Multiomics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Cell Line, Tumor , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
2.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072728

ABSTRACT

Ovarian cancer is often detected at the advanced stages at the time of initial diagnosis. Early-stage diagnosis is difficult due to its asymptomatic nature, where less than 30% of 5-year survival has been noticed. The underlying molecular events associated with the disease's pathogenesis have yet to be fully elucidated. Thus, the identification of prognostic biomarkers as well as developing novel therapeutic agents for targeting these markers become relevant. Herein, we identified 264 differentially expressed genes (DEGs) common in four ovarian cancer datasets (GSE14407, GSE18520, GSE26712, GSE54388), respectively. We constructed a protein-protein interaction (PPI) interaction network with the overexpressed genes (72 genes) and performed gene enrichment analysis. In the PPI networks, three proteins; TTK Protein Kinase (TTK), NIMA Related Kinase 2 (NEK2), and cyclin-dependent kinase (CDK1) with higher node degrees were further evaluated as therapeutic targets for our novel multi-target small molecule NSC777201. We found that the upregulated DEGs were enriched in KEGG and gene ontologies associated with ovarian cancer progression, female gamete association, otic vesicle development, regulation of chromosome segregation, and therapeutic failure. In addition to the PPI network, ingenuity pathway analysis also implicate TTK, NEK2, and CDK1 in the elevated salvage pyrimidine and pyridoxal pathways in ovarian cancer. The TTK, NEK2, and CDK1 are over-expressed, demonstrating a high frequency of genetic alterations, and are associated with poor prognosis of ovarian cancer cohorts. Interestingly, NSC777201 demonstrated anti-proliferative and cytotoxic activities (GI50 = 1.6 µM~1.82 µM and TGI50 = 3.5 µM~3.63 µM) against the NCI panels of ovarian cancer cell lines and exhibited a robust interaction with stronger affinities for TTK, NEK2, and CDK1, than do the standard drug, paclitaxel. NSC777201 displayed desirable properties of a drug-like candidate and thus could be considered as a novel small molecule for treating ovarian carcinoma.


Subject(s)
Computational Biology , Drug Discovery , Gene Expression Profiling , Genetic Variation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Protein Kinase Inhibitors/chemistry , Biomarkers, Tumor , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/chemistry , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/chemistry , Computational Biology/methods , Drug Discovery/methods , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Models, Molecular , Molecular Conformation , Molecular Structure , NIMA-Related Kinases/antagonists & inhibitors , NIMA-Related Kinases/chemistry , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/mortality , Prognosis , Protein Interaction Mapping , Protein Interaction Maps , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/chemistry , Structure-Activity Relationship , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL