Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Mol Ther ; 28(7): 1600-1613, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32559430

ABSTRACT

Chimeric antigen receptor (CAR)-modified T cells are endowed with novel antigen specificity and are most often administered to patients without an engineered mechanism to control the CAR T cells once infused. "Suicide switches" such as the small molecule-controlled, inducible caspase-9 (iCas9) system afford the ability to selectively eliminate engineered T cells; however, these approaches are designed for all-or-none, irreversible termination of an ongoing immune response. In order to permit reversible and adjustable modulation, we have created a CAR that is capable of on-demand downregulation by fusing the CAR to a previously developed ligand-induced degradation (LID) domain. Addition of a small molecule ligand triggers exposure of a cryptic degron within the LID domain, resulting in proteasomal degradation of the CAR-LID fusion protein and loss of CAR on the surface of T cells. This fusion construct allowed for reversible and "tunable" inhibition of CAR T cell activity in vitro. Delivery of the triggering molecule in CAR-LID-treated tumor-bearing mice temporarily reduced CAR activity through modulation of CAR surface expression. The ability to more flexibly modulate CAR T cell expression through a small molecule provides a platform for controlling possible adverse side effects, as well as preclinical investigations of CAR T cell biology.


Subject(s)
Morpholines/chemistry , Neoplasms/therapy , Receptors, Chimeric Antigen/metabolism , Recombinant Fusion Proteins/chemistry , Small Molecule Libraries/administration & dosage , T-Lymphocytes/transplantation , Animals , Cell Line, Tumor , Cell Proliferation , Female , Humans , Immunotherapy, Adoptive , Ligands , Mice , Neoplasm Transplantation , Neoplasms/immunology , Proteasome Endopeptidase Complex/metabolism , Protein Domains , Proteolysis , Receptors, Chimeric Antigen/chemistry , Recombinant Fusion Proteins/metabolism , Small Molecule Libraries/pharmacology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism
2.
Am J Med Genet A ; 179(6): 1091-1097, 2019 06.
Article in English | MEDLINE | ID: mdl-30908877

ABSTRACT

The neurofibromatoses, which include neurofibromatosis type I (NF1), neurofibromatosis type II (NF2), and schwannomatosis, are a group of syndromes characterized by tumor growth in the nervous system. The RASopathies are a group of syndromes caused by germline mutations in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) pathway. The RASopathies include NF1, Noonan syndrome, Noonan syndrome with multiple lentigines, Costello syndrome, cardio-facio-cutaneous syndrome, Legius syndrome, capillary malformation arterio-venous malformation syndrome, and SYNGAP1 autism. Due to their common underlying pathogenetic etiology, all these syndromes have significant phenotypic overlap of which one common feature include a predisposition to tumors, which may be benign or malignant. Together as a group, they represent one of the most common multiple congenital anomaly syndromes estimating to affect approximately one in 1000 individuals worldwide. The subcontinent of India represents one of the largest populations in the world, yet remains underserved from an aspect of clinical genetics services. In an effort to bridge this gap, the First International Conference on RASopathies and Neurofibromatoses in Asia: Identification and Advances of New Therapeutics was held in Kochi, Kerala, India. These proceedings chronicle this timely and topical international symposium directed at discussing the best practices and therapies for individuals with neurofibromatoses and RASopathies.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Mitogen-Activated Protein Kinases/genetics , Neurofibromatoses/etiology , ras Proteins/genetics , Biomarkers , Disease Management , Genetic Association Studies/methods , Humans , Mitogen-Activated Protein Kinases/metabolism , Molecular Diagnostic Techniques , Molecular Targeted Therapy , Neurofibromatoses/diagnosis , Neurofibromatoses/therapy , Signal Transduction , Translational Research, Biomedical , ras Proteins/metabolism
3.
Bioorg Med Chem ; 25(3): 1004-1013, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28011205

ABSTRACT

Signaling mediated by extracellular signal-regulated kinases 1 and 2 (ERK1/2) is involved in numerous cellular processes. Mitogen-activated protein kinase kinases (MEK1/2) catalyze the phosphorylation of ERK1/2, converting it into an active kinase that regulates the expression of numerous genes and cellular processes. Inhibitors of MEK1/2 have demonstrated preclinical and clinical efficacy in certain cancers and types of cardiomyopathy. We report the synthesis of a novel, allosteric, macrocyclic MEK1/2 inhibitor that potently inhibits ERK1/2 activity in cultured cells and tissues of mice after systemic administration. Mice with dilated cardiomyopathy caused by a lamin A/C gene mutation have abnormally increased cardiac ERK1/2 activity. In these mice, this novel MEK1/2 inhibitor is well tolerated, improves left ventricular systolic function, decreases left ventricular fibrosis, has beneficial effects on skeletal muscle structure and pathology and prolongs survival. The novel MEK1/2 inhibitor described herein may therefore find clinical utility in the treatment of this rare cardiomyopathy, other types of cardiomyopathy and cancers in humans.


Subject(s)
Cardiomyopathy, Dilated/drug therapy , Disease Models, Animal , Lamin Type A/genetics , Macrocyclic Compounds/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Cardiomyopathy, Dilated/genetics , Dose-Response Relationship, Drug , Macrocyclic Compounds/administration & dosage , Macrocyclic Compounds/chemistry , Mice , Mice, Transgenic , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Structure , Mutation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
5.
ACS Med Chem Lett ; 11(10): 1843-1847, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33062162

ABSTRACT

Human Macrophage Migration Inhibitory Factor (MIF) is a trimeric cytokine implicated in a number of inflammatory and autoimmune diseases and cancer. We previously reported that the dye p425 (Chicago Sky Blue), which bound MIF at the interface of two MIF trimers covering the tautomerase and allosteric pockets, revealed a unique strategy to block MIF's pro-inflammatory activities. Structural liabilities, including the large size, precluded p425 as a medicinal chemistry lead for drug development. We report here a rational design strategy linking only the fragment of p425 that binds over the tautomerase pocket to the core of ibudilast, a known MIF allosteric site-specific inhibitor. The chimeric compound, termed L2-4048, was shown by X-ray crystallography to bind at the allosteric and tautomerase sites as anticipated. L2-4048 retained target binding and blocked MIF's tautomerase CD74 receptor binding, and pro-inflammatory activities. Our studies lay the foundation for the design and synthesis of smaller and more drug-like compounds that retain the MIF inhibitory properties of this chimera.

6.
J Med Chem ; 50(21): 5202-16, 2007 Oct 18.
Article in English | MEDLINE | ID: mdl-17887659

ABSTRACT

The peptide hormone ghrelin is the endogenous ligand for the type 1a growth hormone secretagogue receptor (GHS-R1a) and the only currently known circulating appetite stimulant. GHS-R1a antagonism has therefore been proposed as a potential approach for obesity treatment. More recently, ghrelin has been recognized to also play a role in controlling glucose-induced insulin secretion, which suggests another possible benefit for a GHS-R1a antagonist, namely, the role as an insulin secretagogue with potential value for diabetes treatment. In our laboratories, piperidine-substituted quinazolinone derivatives were identified as a new class of small-molecule GHS-R1a antagonists. Starting from an agonist with poor oral bioavailability, optimization led to potent, selective, and orally bioavailable antagonists. In vivo efficacy evaluation of selected compounds revealed suppression of food intake and body weight reduction as well as glucose-lowering effects mediated by glucose-dependent insulin secretion.


Subject(s)
Diabetes Mellitus/drug therapy , Obesity/drug therapy , Quinazolinones/chemical synthesis , Receptors, Ghrelin/antagonists & inhibitors , Administration, Oral , Animals , Binding, Competitive , Blood Glucose/analysis , Cell Line , Eating/drug effects , Glucose Tolerance Test , Humans , Male , Mice , Mice, Inbred C57BL , Quinazolinones/chemistry , Quinazolinones/pharmacology , Radioligand Assay , Rats , Rats, Wistar , Stereoisomerism , Structure-Activity Relationship , Weight Loss/drug effects
8.
Bioorg Med Chem Lett ; 17(15): 4378-81, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17574417

ABSTRACT

Novel anthranilamides were surprisingly found to exert additional activity on B-RAF. Corresponding thiophene, pyrazole, and thiazole core analogs were prepared as VEGFR-2 inhibitors with c-KIT, and B-RAF activity. Compounds in the phenyl, thiophene, and thiazole series are in vivo active.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Humans , Mice , Protein Kinase Inhibitors/therapeutic use , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 14(3): 783-6, 2004 Feb 09.
Article in English | MEDLINE | ID: mdl-14741289

ABSTRACT

Bis-aryl ureas have been disclosed previously as a potent class of Raf kinase inhibitors. Modifications in the amide portion led to an improvement in aqueous solubility, an important characteristic for an oral drug. Based on this finding, we hypothesize that this portion of the molecule is directed towards the solvent in Raf-1.


Subject(s)
Enzyme Inhibitors/pharmacology , MAP Kinase Kinase Kinase 1 , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Urea/analogs & derivatives , Urea/pharmacology , Amides/chemical synthesis , Amides/pharmacology , Baculoviridae/genetics , Enzyme Inhibitors/chemical synthesis , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , Molecular Structure , Pyridines/chemistry , Pyridines/pharmacology , Recombinant Proteins/antagonists & inhibitors , Solubility , Structure-Activity Relationship , Urea/chemical synthesis
10.
Bioorg Med Chem Lett ; 12(12): 1559-62, 2002 Jun 17.
Article in English | MEDLINE | ID: mdl-12039561

ABSTRACT

Inhibitors of the MAP kinase p38 provide a novel approach for the treatment of osteoporosis, inflammatory disorders, and cancer. We have identified N-(3-tert-butyl-1-methyl-5-pyrazolyl)-N'-(4-(4-pyridinylmethyl)phenyl)urea as a potent and selective p38 kinase inhibitor in biochemical and cellular assays. This compound is orally active in two acute models of cytokine release (TNF-induced IL-6 and LPS-induced TNF) and a chronic model of arthritis (20-day murine collagen-induced arthritis).


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Urea/chemical synthesis , Urea/pharmacology , Administration, Oral , Animals , Arthritis/drug therapy , Cytokines/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Mice , Urea/analogs & derivatives , Urea/chemistry , Urea/therapeutic use , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL