Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Allergy Clin Immunol ; 153(3): 695-704, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38056635

ABSTRACT

BACKGROUND: Piwi-interacting RNAs (piRNAs), comprising the largest noncoding RNA group, regulate transcriptional processes. Whether piRNAs are associated with type 2 (T2)-high asthma is unknown. OBJECTIVE: We sought to investigate the association between piRNAs and T2-high asthma in childhood asthma. METHODS: We sequenced plasma samples from 462 subjects in the Childhood Asthma Management Program (CAMP) as the discovery cohort and 1165 subjects in the Genetics of Asthma in Costa Rica Study (GACRS) as a replication cohort. Sequencing reads were filtered first, and piRNA reads were annotated and normalized. Linear regression was used for the association analysis of piRNAs and peripheral blood eosinophil count, total serum IgE level, and long-term asthma exacerbation in children with asthma. Mediation analysis was performed to investigate the effect direction. We then ascertained if the circulating piRNAs were present in asthmatic airway epithelial cells in a Gene Expression Omnibus (GEO; www.ncbi.nlm.nih.gov/geo) public data set. RESULTS: Fifteen piRNAs were significantly associated with eosinophil count in CAMP (P ≤ .05), and 3 were successfully replicated in GACRS. Eleven piRNAs were associated with total IgE in CAMP, and one of these was replicated in GACRS. All 22 significant piRNAs were identified in epithelial cells in vitro, and 6 of these were differentially expressed between subjects with asthma and healthy controls. Fourteen piRNAs were associated with long-term asthma exacerbation, and effect of piRNAs on long-term asthma exacerbation are mediated through eosinophil count and serum IgE level. CONCLUSION: piRNAs are associated with peripheral blood eosinophils and total serum IgE in childhood asthma and may play important roles in T2-high asthma.


Subject(s)
Asthma , Piwi-Interacting RNA , Child , Humans , RNA, Small Interfering/genetics , Asthma/genetics , Immunoglobulin E/genetics , Phenotype
2.
Respir Res ; 25(1): 118, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459594

ABSTRACT

BACKGROUND: Vitamin D may help to alleviate asthma exacerbation because of its anti-inflammation effect, but the evidence is inconsistent in childhood asthma. MiRNAs are important mediators in asthma pathogenesis and also excellent non-invasive biomarkers. We hypothesized that circulating miRNAs are associated with asthma exacerbation and modified by vitamin D levels. METHODS: We sequenced baseline serum miRNAs from 461 participants in the Childhood Asthma Management Program (CAMP). Logistic regression was used to associate miRNA expression with asthma exacerbation through interaction analysis first and then stratified by vitamin D insufficient and sufficient groups. Microarray from lymphoblastoid B-cells (LCLs) treated by vitamin D or sham of 43 subjects in CAMP were used for validation in vitro. The function of miRNAs was associated with gene modules by weighted gene co-expression network analysis (WGCNA). RESULTS: We identified eleven miRNAs associated with asthma exacerbation with vitamin D effect modification. Of which, five were significant in vitamin D insufficient group and nine were significant in vitamin D sufficient group. Six miRNAs, including hsa-miR-143-3p, hsa-miR-192-5p, hsa-miR-151a-5p, hsa-miR-24-3p, hsa-miR-22-3p and hsa-miR-451a were significantly associated with gene modules of immune-related functions, implying miRNAs may mediate vitamin D effect on asthma exacerbation through immune pathways. In addition, hsa-miR-143-3p and hsa-miR-451a are potential predictors of childhood asthma exacerbation at different vitamin D levels. CONCLUSIONS: miRNAs are potential mediators of asthma exacerbation and their effects are directly impacted by vitamin D levels.


Subject(s)
Asthma , Circulating MicroRNA , MicroRNAs , Humans , MicroRNAs/metabolism , Circulating MicroRNA/genetics , Gene Expression Profiling , Asthma/diagnosis , Asthma/genetics , Vitamin D
3.
Cell Commun Signal ; 22(1): 347, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943141

ABSTRACT

PIWI-interacting RNA (piRNA) is the most abundant small non-coding RNA in animal cells, typically 26-31 nucleotides in length and it binds with PIWI proteins, a subfamily of Argonaute proteins. Initially discovered in germ cells, piRNA is well known for its role in silencing transposons and maintaining genome integrity. However, piRNA is also present in somatic cells as well as in extracellular vesicles and exosomes. While piRNA has been extensively studied in various diseases, particular cancer, its function in immune diseases remains unclear. In this review, we summarize current research on piRNA in immune diseases. We first introduce the basic characteristics, biogenesis and functions of piRNA. Then, we review the association of piRNA with different types of immune diseases, including autoimmune diseases, immunodeficiency diseases, infectious diseases, and other immune-related diseases. piRNA is considered a promising biomarker for diseases, highlighting the need for further research into its potential mechanisms in disease pathogenesis.


Subject(s)
Immune System Diseases , RNA, Small Interfering , Humans , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Animals , Immune System Diseases/genetics , Immune System Diseases/metabolism , Piwi-Interacting RNA
4.
Int J Mol Sci ; 24(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175432

ABSTRACT

Intrauterine smoke (IUS) exposure during early childhood has been associated with a number of negative health consequences, including reduced lung function and asthma susceptibility. The biological mechanisms underlying these associations have not been established. MicroRNAs regulate the expression of numerous genes involved in lung development. Thus, investigation of the impact of IUS on miRNA expression during human lung development may elucidate the impact of IUS on post-natal respiratory outcomes. We sought to investigate the effect of IUS exposure on miRNA expression during early lung development. We hypothesized that miRNA-mRNA networks are dysregulated by IUS during human lung development and that these miRNAs may be associated with future risk of asthma and allergy. Human fetal lung samples from a prenatal tissue retrieval program were tested for differential miRNA expression with IUS exposure (measured using placental cotinine concentration). RNA was extracted and miRNA-sequencing was performed. We performed differential expression using IUS exposure, with covariate adjustment. We also considered the above model with an additional sex-by-IUS interaction term, allowing IUS effects to differ by male and female samples. Using paired gene expression profiles, we created sex-stratified miRNA-mRNA correlation networks predictive of IUS using DIABLO. We additionally evaluated whether miRNAs were associated with asthma and allergy outcomes in a cohort of childhood asthma. We profiled pseudoglandular lung miRNA in n = 298 samples, 139 (47%) of which had evidence of IUS exposure. Of 515 miRNAs, 25 were significantly associated with intrauterine smoke exposure (q-value < 0.10). The IUS associated miRNAs were correlated with well-known asthma genes (e.g., ORM1-Like Protein 3, ORDML3) and enriched in disease-relevant pathways (oxidative stress). Eleven IUS-miRNAs were also correlated with clinical measures (e.g., Immunoglobulin E andlungfunction) in children with asthma, further supporting their likely disease relevance. Lastly, we found substantial differences in IUS effects by sex, finding 95 significant IUS-miRNAs in male samples, but only four miRNAs in female samples. The miRNA-mRNA correlation networks were predictive of IUS (AUC = 0.78 in males and 0.86 in females) and suggested that IUS-miRNAs are involved in regulation of disease-relevant genes (e.g., A disintegrin and metalloproteinase domain 19 (ADAM19), LBH regulator of WNT signaling (LBH)) and sex hormone signaling (Coactivator associated methyltransferase 1(CARM1)). Our study demonstrated differential expression of miRNAs by IUS during early prenatal human lung development, which may be modified by sex. Based on their gene targets and correlation to clinical asthma and atopy outcomes, these IUS-miRNAs may be relevant for subsequent allergy and asthma risk. Our study provides insight into the impact of IUS in human fetal lung transcriptional networks and on the developmental origins of asthma and allergic disorders.


Subject(s)
Asthma , MicroRNAs , Child , Humans , Male , Female , Child, Preschool , Pregnancy , Smoke , Placenta/metabolism , Asthma/genetics , Lung/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics
5.
Thorax ; 77(5): 452-460, 2022 05.
Article in English | MEDLINE | ID: mdl-34580195

ABSTRACT

INTRODUCTION: Asthma is a complex disease with heterogeneous expression/severity. There is growing interest in defining asthma endotypes consistently associated with different responses to therapy, focusing on type 2 inflammation (Th2) as a key pathological mechanism. Current asthma endotypes are defined primarily by clinical/laboratory criteria. Each endotype is likely characterised by distinct molecular mechanisms that identify optimal therapies. METHODS: We applied unsupervised (without a priori clinical criteria) principal component analysis on sputum airway cells RNA-sequencing transcriptomic data from 19 asthmatics from the Severe Asthma Research Program at baseline and 6-8 weeks follow-up after a 40 mg dose of intramuscular corticosteroids. We investigated principal components PC1, PC3 for association with 55 clinical variables. RESULTS: PC3 was associated with baseline Th2 clinical features including blood (rank-sum p=0.0082) and airway (rank-sum p=0.0024) eosinophilia, FEV1 change (Kendall tau-b R=-0.333 (-0.592 to -0.012)) and follow-up FEV1 albuterol response (Kendall tau-b R=0.392 (0.079 to 0.634)). PC1 with blood basophlia (rank-sum p=0.0191). The top 5% genes contributing to PC1, PC3 were enriched for distinct immune system/inflammation ontologies suggesting distinct subject-specific clusters of transcriptomic response to corticosteroids. PC3 association with FEV1 change was reproduced in silico in a comparable independent 14-subject (baseline, 8 weeks after daily inhaled corticosteroids (ICS)) airway epithelial cells microRNAome dataset. CONCLUSIONS: Transcriptomic PCs from this unsupervised methodology define molecular pharmacogenomic endotypes that may yield novel biology underlying different subject-specific responses to corticosteroid therapy in asthma, and optimal personalised asthma care. Top contributing genes to these PCs may suggest new therapeutic targets.


Subject(s)
Asthma , Eosinophils , Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , Asthma/genetics , Basophils/pathology , Eosinophils/pathology , Humans , Inflammation , Lung , Sputum , Steroids/therapeutic use
6.
J Allergy Clin Immunol ; 147(6): 2181-2190, 2021 06.
Article in English | MEDLINE | ID: mdl-33385444

ABSTRACT

BACKGROUND: Many microRNAs (miRNAs) have been associated with asthma and chronic obstructive pulmonary disease (COPD). Longitudinal lung function growth trajectories of children with asthma-normal growth, reduced growth (RG), early decline (ED), and RG with an ED (RGED)-have been observed, with RG and RGED associated with adverse outcomes, including COPD. OBJECTIVE: Our aim was to determine whether circulating miRNAs from an early age in children with asthma would be prognostic of reduced lung function growth patterns over the next 16 years. METHODS: We performed small RNA sequencing on sera from 492 children aged 5 to 12 years with mild-to-moderate asthma from the CAMP clinical trial, who were subsequently followed for 12 to 16 years. miRNAs were assessed for differential expression between previously assigned lung function growth patterns. RESULTS: We had 448 samples and 259 miRNAs for differential analysis. In a comparison of the normal and the most severe group (ie, normal growth compared with RGED), we found 1 strongly dysregulated miRNA, hsa-miR-145-5p (P < 8.01E-05). This miR was downregulated in both ED groups (ie, ED and RGED). We verified that miR-145-5p was strongly associated with airway smooth muscle cell growth in vitro. CONCLUSION: Our results showed that miR-145-5p is associated with the ED patterns of lung function growth leading to COPD in children with asthma and additionally increases airway smooth muscle cell proliferation. This represents a significant extension of our understanding of the role of miR-145-5p in COPD and suggests that reduced expression of miR-145-5p is a risk factor for ED of long-term lung function.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Child , Child, Preschool , Down-Regulation , Forced Expiratory Volume , Gene Expression Profiling , Humans , RNA Interference , RNA, Messenger/genetics , Respiratory Function Tests , Severity of Illness Index
7.
Am J Respir Crit Care Med ; 202(1): 65-72, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32272022

ABSTRACT

Rationale: Inhaled corticosteroids (ICS) are key treatments for controlling asthma and preventing asthma attacks. However, the responsiveness to ICS varies among individuals. MicroRNAs (miRNAs) have been lauded for their prognostic utility.Objectives: We hypothesized that circulating miRNAs obtained at baseline/prerandomization in the Childhood Asthma Management Program (CAMP) could serve as biomarkers and biologic mediators of ICS clinical response over the 4-year clinical trial period.Methods: We selected baseline serum samples from 462 CAMP subjects subsequently randomized to either ICS (budesonide) or placebo. Samples underwent small RNA sequencing, and read counts were normalized and filtered by depth and coverage. Linear regression was used to associate miRNAs with change in FEV1% (prebronchodilator FEV1 as a percent predicted) over the 4-year treatment period in both main effects and interaction models. We validated the function of the top associated miRNAs by luciferase reporter assays of glucocorticoid-mediated transrepression and predicted response to ICS through logistic regression models.Measurements and Main Results: We identified 7 miRNAs significantly associated with FEV1% change (P ≤ 0.05) and 15 miRNAs with significant interaction (P ≤ 0.05) to ICS versus placebo treatments. We selected three miRNAs for functional validation, of which hsa-miR-155-5p and hsa-miR-532-5p were significantly associated with changes in dexamethasone-induced transrepression of NF-κB. Combined, these two miRNAs were predictive of ICS response over the course of the clinical trial, with an area under the receiver operating characteristic curve of 0.86.Conclusions: We identified two functional circulating miRNAs predictive of asthma ICS treatment response over time.


Subject(s)
Anti-Asthmatic Agents/therapeutic use , Asthma/drug therapy , Asthma/genetics , Budesonide/therapeutic use , Circulating MicroRNA/blood , Administration, Inhalation , Asthma/blood , Asthma/diagnosis , Biomarkers/blood , Child , Female , Follow-Up Studies , Forced Expiratory Volume , Humans , Linear Models , Logistic Models , Male , Treatment Outcome
8.
Hum Mol Genet ; 27(21): 3801-3812, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30060175

ABSTRACT

Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is substantially influenced by genetic factors. Alpha-1 antitrypsin deficiency demonstrates that rare coding variants of large effect can influence COPD susceptibility. To identify additional rare coding variants in patients with severe COPD, we conducted whole exome sequencing analysis in 2543 subjects from two family-based studies (Boston Early-Onset COPD Study and International COPD Genetics Network) and one case-control study (COPDGene). Applying a gene-based segregation test in the family-based data, we identified significant segregation of rare loss of function variants in TBC1D10A and RFPL1 (P-value < 2x10-6), but were unable to find similar variants in the case-control study. In single-variant, gene-based and pathway association analyses, we were unable to find significant findings that replicated or were significant in meta-analysis. However, we found that the top results in the two datasets were in proximity to each other in the protein-protein interaction network (P-value = 0.014), suggesting enrichment of these results for similar biological processes. A network of these association results and their neighbors was significantly enriched in the transforming growth factor beta-receptor binding and cilia-related pathways. Finally, in a more detailed examination of candidate genes, we identified individuals with putative high-risk variants, including patients harboring homozygous mutations in genes associated with cutis laxa and Niemann-Pick Disease Type C. Our results likely reflect heterogeneity of genetic risk for COPD along with limitations of statistical power and functional annotation, and highlight the potential of network analysis to gain insight into genetic association studies.


Subject(s)
Exome Sequencing , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/genetics , Adolescent , Adult , Aged , Case-Control Studies , DNA Mutational Analysis , Female , Genetic Association Studies , Humans , Male , Middle Aged , Mutation , Young Adult
9.
Eur Respir J ; 56(4)2020 10.
Article in English | MEDLINE | ID: mdl-32482784

ABSTRACT

COPD likely has developmental origins; however, the underlying molecular mechanisms are not fully identified. Investigation of lung tissue-specific epigenetic modifications such as DNA methylation using network approaches might facilitate insights linking in utero smoke (IUS) exposure and risk for COPD in adulthood.We performed genome-wide methylation profiling for adult lung DNA from 160 surgical samples and 78 fetal lung DNA samples isolated from discarded tissue at 8-18 weeks of gestation. Co-methylation networks were constructed to identify preserved modules that shared methylation patterns in fetal and adult lung tissues and associations with fetal IUS exposure, gestational age and COPD.Weighted correlation networks highlighted preserved and co-methylated modules for both fetal and adult lung data associated with fetal IUS exposure, COPD and lower adult lung function. These modules were significantly enriched for genes involved in embryonic organ development and specific inflammation-related pathways, including Hippo, phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT), Wnt, mitogen-activated protein kinase and transforming growth factor-ß signalling. Gestational age-associated modules were remarkably preserved for COPD and lung function, and were also annotated to genes enriched for the Wnt and PI3K/AKT pathways.Epigenetic network perturbations in fetal lung tissue exposed to IUS and of early lung development recapitulated in adult lung tissue from ex-smokers with COPD. Overlapping fetal and adult lung tissue network modules highlighted putative disease pathways supportive of exposure-related and age-associated developmental origins of COPD.


Subject(s)
Phosphatidylinositol 3-Kinases , Pulmonary Disease, Chronic Obstructive , Adult , DNA Methylation , Epigenesis, Genetic , Humans , Lung , Phosphatidylinositol 3-Kinases/genetics , Pulmonary Disease, Chronic Obstructive/genetics
10.
Respir Res ; 21(1): 31, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992292

ABSTRACT

BACKGROUND: Global gene expression levels are known to be highly dependent upon gross demographic features including age, yet identification of age-related genomic indicators has yet to be comprehensively undertaken in a disease and treatment-specific context. METHODS: We used gene expression data from CD4+ lymphocytes in the Asthma BioRepository for Integrative Genomic Exploration (Asthma BRIDGE), an open-access collection of subjects participating in genetic studies of asthma with available gene expression data. Replication population participants were Puerto Rico islanders recruited as part of the ongoing Genes environments & Admixture in Latino Americans (GALA II), who provided nasal brushings for transcript sequencing. The main outcome measure was chronic asthma control as derived by questionnaires. Genomic associations were performed using regression of chronic asthma control score on gene expression with age in years as a covariate, including a multiplicative interaction term for gene expression times age. RESULTS: The SMARCD1 gene (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1) interacted with age to influence chronic asthma control on inhaled corticosteroids, with a doubling of expression leading to an increase of 1.3 units of chronic asthma control per year (95% CI [0.86, 1.74], p = 6 × 10- 9), suggesting worsening asthma control with increasing age. This result replicated in GALA II (p = 3.8 × 10- 8). Cellular assays confirmed the role of SMARCD1 in glucocorticoid response in airway epithelial cells. CONCLUSION: Focusing on age-dependent factors may help identify novel indicators of asthma medication response. Age appears to modulate the effect of SMARCD1 on asthma control with inhaled corticosteroids.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Asthma/drug therapy , Asthma/genetics , Chromosomal Proteins, Non-Histone/biosynthesis , Chromosomal Proteins, Non-Histone/genetics , Hispanic or Latino/genetics , Administration, Inhalation , Adolescent , Adult , Age Factors , Asthma/metabolism , Child , Cohort Studies , Female , Gene Expression , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
11.
Am J Respir Cell Mol Biol ; 60(6): 687-694, 2019 06.
Article in English | MEDLINE | ID: mdl-30571139

ABSTRACT

Mucus overproduction is a major contributor to morbidity and mortality in asthma. Mucus overproduction is induced by orchestrated actions of multiple factors that include inflammatory cytokines and γ-aminobutyric acid (GABA). GABA is produced only by pulmonary neuroendocrine cells (PNECs) in the mouse lung. Recent studies in a neonatal mouse model of allergic inflammation have shown that PNECs play an essential role in mucus overproduction by GABA hypersecretion. Whether PNECs mediate dysregulated GABA signaling for mucus overproduction in asthma is unknown. In this study, we characterized the cellular source of GABA in the lungs of nonhuman primates and humans and assessed GABA secretion and signaling in primate disease models. We found that like in mice, PNECs were the major source of GABA in primate lungs. In addition, an infant nonhuman primate model of asthma exhibited an increase in GABA secretion. Furthermore, subjects with asthma had elevated levels of expression of a subset of GABA type α (GABAα) and type ß (GABAß) receptors in airway epithelium compared with those of healthy control subjects. Last, employing a normal human bronchial epithelial cell model of preinduced mucus overproduction, we showed pharmaceutical blockade of GABAα and GABAß receptor signaling reversed the effect of IL-13 on MUC5AC gene expression and goblet cell proliferation. Together, our data demonstrate an evolutionarily conserved intraepithelial GABA signaling that, in concert with IL-13, plays an essential role in mucus overproduction. Our findings may offer new strategies to ameliorate mucus overproduction in patients with asthma by targeting PNEC secretion and GABA signaling.


Subject(s)
Goblet Cells/pathology , Lung/pathology , Neuroendocrine Cells/metabolism , gamma-Aminobutyric Acid/metabolism , Acute Lung Injury/pathology , Animals , Asthma/pathology , Bronchi/pathology , Disease Models, Animal , Epithelial Cells/metabolism , Humans , Hyperplasia , Interleukin-13/metabolism , Macaca mulatta , Mucus/metabolism , Receptors, GABA/metabolism , Signal Transduction
12.
Respir Res ; 19(1): 128, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29940952

ABSTRACT

BACKGROUND: Circulating microRNAs have shown promise as non-invasive biomarkers and predictors of disease activity. Prior asthma studies using clinical, biochemical and genomic data have not shown excellent prediction of exacerbation. We hypothesized that a panel of circulating microRNAs in a pediatric asthma cohort combined with an exacerbation clinical score might predict exacerbation better than the latter alone. METHODS: Serum samples from 153 children at randomization in the Childhood Asthma Management Program were profiled for 754 microRNAs. Data dichotomized for asthma exacerbation one year after randomization to inhaled corticosteroid treatment were used for binary logistic regression with miRNA expressions and exacerbation clinical score. RESULTS: 12 of 125 well-detected circulating microRNAs had significant odd ratios for exacerbation with miR-206 being most significant. Each doubling of expression of the 12 microRNA corresponded to a 25-67% increase in exacerbation risk. Stepwise logistic regression yielded a 3-microRNA model (miR-146b, miR-206 and miR-720) that, combined with the exacerbation clinical score, had excellent predictive power with a 0.81 AUROC. These 3 microRNAs were involved in NF-kß and GSK3/AKT pathways. CONCLUSIONS: This combined circulating microRNA-clinical score model predicted exacerbation in asthmatic subjects on inhaled corticosteroids better than each constituent feature alone. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00000575 .


Subject(s)
Asthma/blood , Asthma/genetics , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Disease Progression , Gene Expression Profiling/methods , Asthma/diagnosis , Biomarkers/blood , Child , Child, Preschool , Double-Blind Method , Female , Humans , Male , Predictive Value of Tests
13.
Mol Cell Proteomics ; 15(6): 1877-94, 2016 06.
Article in English | MEDLINE | ID: mdl-26933193

ABSTRACT

Adjuvants boost vaccine responses, enhancing protective immunity against infections that are most common among the very young. Many adjuvants activate innate immunity, some via Toll-Like Receptors (TLRs), whose activities varies with age. Accordingly, characterization of age-specific adjuvant-induced immune responses may inform rational adjuvant design targeting vulnerable populations. In this study, we employed proteomics to characterize the adjuvant-induced changes of secretomes from human newborn and adult monocytes in response to Alum, the most commonly used adjuvant in licensed vaccines; Monophosphoryl Lipid A (MPLA), a TLR4-activating adjuvant component of a licensed Human Papilloma Virus vaccine; and R848 an imidazoquinoline TLR7/8 agonist that is a candidate adjuvant for early life vaccines. Monocytes were incubated in vitro for 24 h with vehicle, Alum, MPLA, or R848 and supernatants collected for proteomic analysis employing liquid chromatography-mass spectrometry (LC-MS) (data available via ProteomeXchange, ID PXD003534). 1894 non-redundant proteins were identified, of which ∼30 - 40% were common to all treatment conditions and ∼5% were treatment-specific. Adjuvant-stimulated secretome profiles, as identified by cluster analyses of over-represented proteins, varied with age and adjuvant type. Adjuvants, especially Alum, activated multiple innate immune pathways as assessed by functional enrichment analyses. Release of lactoferrin, pentraxin 3, and matrix metalloproteinase-9 was confirmed in newborn and adult whole blood and blood monocytes stimulated with adjuvants alone or adjuvanted licensed vaccines with distinct clinical reactogenicity profiles. MPLA-induced adult monocyte secretome profiles correlated in silico with transcriptome profiles induced in adults immunized with the MPLA-adjuvanted RTS,S malaria vaccine (Mosquirix™). Overall, adjuvants such as Alum, MPLA and R848 give rise to distinct and age-specific monocyte secretome profiles, paralleling responses to adjuvant-containing vaccines in vivo Age-specific in vitro modeling coupled with proteomics may provide fresh insight into the ontogeny of adjuvant action thereby informing targeted adjuvanted vaccine development for distinct age groups.


Subject(s)
Adjuvants, Immunologic/pharmacology , Monocytes/drug effects , Proteome/metabolism , Proteomics/methods , Adult , Age Factors , Alum Compounds/pharmacology , Chromatography, Liquid , Humans , Imidazoles/pharmacology , Immunity, Innate/drug effects , Infant, Newborn , Lipid A/analogs & derivatives , Lipid A/pharmacology , Mass Spectrometry , Monocytes/metabolism , Proteome/drug effects
14.
Am J Respir Crit Care Med ; 194(12): 1465-1474, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27367781

ABSTRACT

RATIONALE: Patterns of longitudinal lung function growth and decline in childhood asthma have been shown to be important in determining risk for future respiratory ailments including chronic airway obstruction and chronic obstructive pulmonary disease. OBJECTIVES: To determine the genetic underpinnings of lung function patterns in subjects with childhood asthma. METHODS: We performed a genome-wide association study of 581 non-Hispanic white individuals with asthma that were previously classified by patterns of lung function growth and decline (normal growth, normal growth with early decline, reduced growth, and reduced growth with early decline). The strongest association was also measured in two additional cohorts: a small asthma cohort and a large chronic obstructive pulmonary disease metaanalysis cohort. Interaction between the genomic region encompassing the most strongly associated single-nucleotide polymorphism and nearby genes was assessed by two chromosome conformation capture assays. MEASUREMENTS AND MAIN RESULTS: An intergenic single-nucleotide polymorphism (rs4445257) on chromosome 8 was strongly associated with the normal growth with early decline pattern compared with all other pattern groups (P = 6.7 × 10-9; odds ratio, 2.8; 95% confidence interval, 2.0-4.0); replication analysis suggested this variant had opposite effects in normal growth with early decline and reduced growth with early decline pattern groups. Chromosome conformation capture experiments indicated a chromatin interaction between rs4445257 and the promoter of the distal CSMD3 gene. CONCLUSIONS: Early decline in lung function after normal growth is associated with a genetic polymorphism that may also protect against early decline in reduced growth groups. Clinical trial registered with www.clinicaltrials.gov (NCT00000575).


Subject(s)
Asthma/genetics , Asthma/physiopathology , Genetic Predisposition to Disease/genetics , Genomics/methods , Lung/physiopathology , Child , Child, Preschool , Female , Forced Expiratory Volume , Genome-Wide Association Study , Humans , Longitudinal Studies , Male , Netherlands , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/physiology
16.
Am J Respir Cell Mol Biol ; 54(6): 814-21, 2016 06.
Article in English | MEDLINE | ID: mdl-26584061

ABSTRACT

The fetal origins of disease hypothesis suggests that variations in the course of prenatal lung development may affect life-long pulmonary function growth, decline, and pathobiology. Many studies support the existence of differences in the developing lung trajectory in males and females, and sex-specific differences in the prevalence of chronic lung diseases, such as asthma and bronchopulmonary dysplasia. The objectives of this study were to investigate the early developing fetal lung for transcriptomic correlates of postconception age (maturity) and sex, and their associations with chronic lung diseases. We analyzed whole-lung transcriptome profiles of 61 females and 78 males at 54-127 days postconception (dpc) from nonsmoking mothers using unsupervised principal component analysis and supervised linear regression models. We identified dominant transcriptomic correlates for postconception age and sex with corresponding gene sets that were enriched for developing lung structural and functional ontologies. We observed that the transcriptomic sex difference was not a uniform global time shift/lag, rather, lungs of males appear to be more mature than those of females before 96 dpc, and females appear to be more mature than males after 96 dpc. The age correlate gene set was consistently enriched for asthma and bronchopulmonary dysplasia genes, but the sex correlate gene sets were not. Despite sex differences in the developing fetal lung transcriptome, postconception age appears to be more dominant than sex in the effect of early fetal lung developments on disease risk during this early pseudoglandular phase of development.


Subject(s)
Fetus/metabolism , Lung Diseases/genetics , Lung/embryology , Lung/pathology , Sex Characteristics , Transcriptome/genetics , Age Factors , Databases, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Male , Principal Component Analysis , Statistics as Topic
17.
Nat Mater ; 14(10): 1040-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26237129

ABSTRACT

From coffee beans flowing in a chute to cells remodelling in a living tissue, a wide variety of close-packed collective systems-both inert and living-have the potential to jam. The collective can sometimes flow like a fluid or jam and rigidify like a solid. The unjammed-to-jammed transition remains poorly understood, however, and structural properties characterizing these phases remain unknown. Using primary human bronchial epithelial cells, we show that the jamming transition in asthma is linked to cell shape, thus establishing in that system a structural criterion for cell jamming. Surprisingly, the collapse of critical scaling predicts a counter-intuitive relationship between jamming, cell shape and cell-cell adhesive stresses that is borne out by direct experimental observations. Cell shape thus provides a rigorous structural signature for classification and investigation of bronchial epithelial layer jamming in asthma, and potentially in any process in disease or development in which epithelial dynamics play a prominent role.


Subject(s)
Asthma/physiopathology , Bronchi/physiopathology , Cell Shape , Epithelium/pathology , Cell Adhesion , Computer Simulation , Epithelial Cells/cytology , Humans , Models, Biological , Software , Stress, Mechanical
18.
Am J Respir Cell Mol Biol ; 52(5): 543-53, 2015 May.
Article in English | MEDLINE | ID: mdl-25192440

ABSTRACT

Antenatal corticosteroids enhance lung maturation. However, the importance of glucocorticoid genes on early lung development, asthma susceptibility, and treatment response remains unknown. We investigated whether glucocorticoid genes are important during lung development and their role in asthma susceptibility and treatment response. We identified genes that were differentially expressed by corticosteroids in two of three genomic datasets: lymphoblastoid cell lines of participants in the Childhood Asthma Management Program, a glucocorticoid chromatin immunoprecipitation/RNA sequencing experiment, or a murine model; these genes made up the glucocorticoid gene set (GCGS). Using gene expression profiles from 38 human fetal lungs and C57BL/6J murine fetal lungs, we identified developmental genes that were in the top 5% of genes contributing to the top three principal components (PCs) most highly associated with post-conceptional age. Glucocorticoid genes that were enriched in this set of developmental genes were then included in the developmental glucocorticoid gene set (DGGS). We then investigated whether glucocorticoid genes are important during lung development, and their role in asthma susceptibility and treatment response. A total of 232 genes were included in the GCGS. Analysis of gene expression demonstrated that glucocorticoid genes were enriched in lung development (P = 7.02 × 10(-26)). The developmental GCGS was enriched for genes that were differentially expressed between subjects with asthma and control subjects (P = 4.26 × 10(-3)) and were enriched after treatment of subjects with asthma with inhaled corticosteroids (P < 2.72 × 10(-4)). Our results show that glucocorticoid genes are overrepresented among genes implicated in fetal lung development. These genes influence asthma susceptibility and treatment response, suggesting their involvement in the early ontogeny of asthma.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , Asthma/genetics , Dexamethasone/therapeutic use , Gene Expression Profiling , Gene Expression Regulation, Developmental/drug effects , Lung/drug effects , Animals , Animals, Newborn , Asthma/embryology , CCAAT-Enhancer-Binding Protein-delta/genetics , Case-Control Studies , Databases, Genetic , Gene Expression Profiling/methods , Genetic Markers , Genetic Predisposition to Disease , Humans , Lung/embryology , Lung/metabolism , Mice , Mice, Inbred C57BL , Phenotype , Principal Component Analysis , Tacrolimus Binding Proteins/genetics , Transcription Factors/genetics , Treatment Outcome
19.
Thorax ; 69(5): 481-7, 2014 May.
Article in English | MEDLINE | ID: mdl-24668408

ABSTRACT

Lung function tracks from the earliest age that it can be reliably measured. Genome wide association studies suggest that most variants identified for common complex traits are regulatory in function and active during fetal development. Fetal programming of gene expression during development is critical to the formation of a normal lung. An understanding of how fetal developmental genes related to diseases of the lungs and airways is a critical area for research. This review article considers the developmental origins hypothesis, the stages of normal lung development and a variety of environmental exposures that might influence the developmental process: in utero cigarette smoke exposure, vitamin D and folate. We conclude with some information on developmental genes and asthma.


Subject(s)
Asthma/genetics , Environmental Exposure/adverse effects , Genes, Developmental/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans
20.
Genes (Basel) ; 15(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38674355

ABSTRACT

Inhaled corticosteroids (ICS) are efficacious in the treatment of asthma, which affects more than 300 million people in the world. While genome-wide association studies have identified genes involved in differential treatment responses to ICS in asthma, few studies have evaluated the effects of combined rare and common variants on ICS response among children with asthma. Among children with asthma treated with ICS with whole exome sequencing (WES) data in the PrecisionLink Biobank (91 White and 20 Black children), we examined the effect and contribution of rare and common variants with hospitalizations or emergency department visits. For 12 regions previously associated with asthma and ICS response (DPP10, FBXL7, NDFIP1, TBXT, GLCCI1, HDAC9, TBXAS1, STAT6, GSDMB/ORMDL3, CRHR1, GNGT2, FCER2), we used the combined sum test for the sequence kernel association test (SKAT) adjusting for age, sex, and BMI and stratified by race. Validation was conducted in the Biorepository and Integrative Genomics (BIG) Initiative (83 White and 134 Black children). Using a Bonferroni threshold for the 12 regions tested (i.e., 0.05/12 = 0.004), GSDMB/ORMDL3 was significantly associated with ICS response for the combined effect of rare and common variants (p-value = 0.003) among White children in the PrecisionLink Biobank and replicated in the BIG Initiative (p-value = 0.02). Using WES data, the combined effect of rare and common variants for GSDMB/ORMDL3 was associated with ICS response among asthmatic children in the PrecisionLink Biobank and replicated in the BIG Initiative. This proof-of-concept study demonstrates the power of biobanks of pediatric real-life populations in asthma genomic investigations.


Subject(s)
Adrenal Cortex Hormones , Asthma , Gasdermins , Membrane Proteins , Humans , Asthma/drug therapy , Asthma/genetics , Child , Female , Male , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/administration & dosage , Administration, Inhalation , Membrane Proteins/genetics , Genome-Wide Association Study , Adolescent , Child, Preschool , Exome Sequencing , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL