Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
Add more filters

Publication year range
1.
Cell ; 179(3): 736-749.e15, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31626772

ABSTRACT

Underrepresentation of Asian genomes has hindered population and medical genetics research on Asians, leading to population disparities in precision medicine. By whole-genome sequencing of 4,810 Singapore Chinese, Malays, and Indians, we found 98.3 million SNPs and small insertions or deletions, over half of which are novel. Population structure analysis demonstrated great representation of Asian genetic diversity by three ethnicities in Singapore and revealed a Malay-related novel ancestry component. Furthermore, demographic inference suggested that Malays split from Chinese ∼24,800 years ago and experienced significant admixture with East Asians ∼1,700 years ago, coinciding with the Austronesian expansion. Additionally, we identified 20 candidate loci for natural selection, 14 of which harbored robust associations with complex traits and diseases. Finally, we show that our data can substantially improve genotype imputation in diverse Asian and Oceanian populations. These results highlight the value of our data as a resource to empower human genetics discovery across broad geographic regions.


Subject(s)
Genetics, Population , Genome, Human/genetics , Selection, Genetic , Whole Genome Sequencing , Asian People/genetics , Female , Genotype , Humans , Malaysia/epidemiology , Male , Polymorphism, Single Nucleotide/genetics , Singapore/epidemiology
2.
J Nutr ; 154(1): 252-260, 2024 01.
Article in English | MEDLINE | ID: mdl-38035998

ABSTRACT

BACKGROUND: It remains unclear if adherence to the planetary healthy diet (PHD), designed to improve human and environmental health, is associated with better cognitive function in aging, and if this association differs by apolipoprotein E (APOE) genotype. OBJECTIVES: We aimed to examine the association between the PHD pattern and risk of poor cognitive function, and to further assess whether the APOE ε4 allele could modify this association. METHODS: The study included 16,736 participants from the Singapore Chinese Health Study. The PHD score was calculated using data from a validated 165-item food frequency questionnaire at baseline (1993-1998), with higher scores indicating greater adherence to the PHD. Cognitive function was assessed by the Singapore-modified Mini-Mental State Examination at follow-up 3 visits (2014-2016). A subset of 9313 participants had APOE genotype data. Logistic regression models were used to estimate the odds ratios (ORs) and 95% confidence intervals (CIs), with adjustment for potential confounders. RESULTS: We identified 2397 (14.3%) cases of poor cognitive function. In the total population, OR (95% CI) of poor cognitive function for each one-SD increment in the PHD score was 0.89 (0.85, 0.93). Carriers of APOE ε4 allele had increased risk of poor cognitive function (OR: 1.36, 95% CI: 1.15, 1.61). There was a significant interaction between the PHD score and the APOE ε4 allele (P-interaction = 0.042). Each one-SD increment in the PHD score was significantly associated with lower risk of poor cognitive function (OR: 0.89; 95% CI: 0.83, 0.96) in non-carriers of APOE ε4 allele, but not in APOE ε4 allele carriers (OR: 1.04, 95% CI: 0.89, 1.23). CONCLUSIONS: Midlife adherence to the PHD was associated with reduced risk of poor cognitive function in later life. However, this was not observed in carriers of APOE ε4 allele who had higher risk of poor cognitive function.


Subject(s)
Apolipoprotein E4 , Diet, Healthy , Adult , Humans , Apolipoprotein E4/genetics , Singapore , Neuropsychological Tests , Apolipoproteins E/genetics , Cognition , Genotype , Alleles
3.
J Immunol ; 208(6): 1352-1361, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35217585

ABSTRACT

The major human genes regulating Mycobacterium tuberculosis-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression in humans are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling. We hypothesized that common variants in CNBP, REL, and BHLHE40 were associated with IL-12 and IL-10 production from dendritic cells, and that these variants also influence adaptive immune responses to bacillus Calmette-Guérin (BCG) vaccination and TB susceptibility. We characterized the association between common variants in CNBP, REL, and BHLHE40, innate immune responses in dendritic cells and monocyte-derived macrophages, BCG-specific T cell responses, and susceptibility to pediatric and adult TB in human populations. BHLHE40 single-nucleotide polymorphism (SNP) rs4496464 was associated with increased BHLHE40 expression in monocyte-derived macrophages and increased IL-10 from peripheral blood dendritic cells and monocyte-derived macrophages after LPS and TB whole-cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL-2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and rs842618 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618 was associated with increased risk for TB meningitis. In summary, we found that genetic variations in REL and BHLHE40 are associated with IL-12 and IL-10 cytokine responses and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Proto-Oncogene Proteins c-rel/genetics , Tuberculosis , Adult , BCG Vaccine , Basic Helix-Loop-Helix Transcription Factors , Child , Homeodomain Proteins , Humans , Interleukin-10/genetics , Interleukin-12/genetics , Tuberculosis/genetics
4.
J Am Soc Nephrol ; 34(11): 1900-1913, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37787447

ABSTRACT

SIGNIFICANCE STATEMENT: Genome-wide association studies have identified nearly 20 IgA nephropathy susceptibility loci. However, most nonsynonymous coding variants, particularly ones that occur rarely or at a low frequency, have not been well investigated. The authors performed a chip-based association study of IgA nephropathy in 8529 patients with the disorder and 23,224 controls. They identified a rare variant in the gene encoding vascular endothelial growth factor A (VEGFA) that was significantly associated with a two-fold increased risk of IgA nephropathy, which was further confirmed by sequencing analysis. They also identified a novel common variant in PKD1L3 that was significantly associated with lower haptoglobin protein levels. This study, which was well-powered to detect low-frequency variants with moderate to large effect sizes, helps expand our understanding of the genetic basis of IgA nephropathy susceptibility. BACKGROUND: Genome-wide association studies have identified nearly 20 susceptibility loci for IgA nephropathy. However, most nonsynonymous coding variants, particularly those occurring rarely or at a low frequency, have not been well investigated. METHODS: We performed a three-stage exome chip-based association study of coding variants in 8529 patients with IgA nephropathy and 23,224 controls, all of Han Chinese ancestry. Sequencing analysis was conducted to investigate rare coding variants that were not covered by the exome chip. We used molecular dynamic simulation to characterize the effects of mutations of VEGFA on the protein's structure and function. We also explored the relationship between the identified variants and the risk of disease progression. RESULTS: We discovered a novel rare nonsynonymous risk variant in VEGFA (odds ratio, 1.97; 95% confidence interval [95% CI], 1.61 to 2.41; P = 3.61×10 -11 ). Further sequencing of VEGFA revealed twice as many carriers of other rare variants in 2148 cases compared with 2732 controls. We also identified a common nonsynonymous risk variant in PKD1L3 (odds ratio, 1.16; 95% CI, 1.11 to 1.21; P = 1.43×10 -11 ), which was associated with lower haptoglobin protein levels. The rare VEGFA mutation could cause a conformational change and increase the binding affinity of VEGFA to its receptors. Furthermore, this variant was associated with the increased risk of kidney disease progression in IgA nephropathy (hazard ratio, 2.99; 95% CI, 1.09 to 8.21; P = 0.03). CONCLUSIONS: Our study identified two novel risk variants for IgA nephropathy in VEGFA and PKD1L3 and helps expand our understanding of the genetic basis of IgA nephropathy susceptibility.


Subject(s)
Genome-Wide Association Study , Glomerulonephritis, IGA , Humans , Vascular Endothelial Growth Factor A/genetics , Genetic Predisposition to Disease , Glomerulonephritis, IGA/genetics , Haptoglobins/genetics , Disease Progression , Polymorphism, Single Nucleotide
5.
J Infect Dis ; 228(3): 343-352, 2023 08 11.
Article in English | MEDLINE | ID: mdl-36823694

ABSTRACT

BACKGROUND: The purpose of this study was to assess if single nucleotide polymorphisms (SNPs) in lung mucins MUC5B and MUC5AC are associated with Mycobacterium tuberculosis outcomes. METHODS: Independent SNPs in MUC5B and MUC5AC (genotyped by Illumina HumanOmniExpress array) were assessed for associations with tumor necrosis factor (TNF) concentrations (measured by immunoassay) in cerebral spinal fluid (CSF) from tuberculous meningitis (TBM) patients. SNPs associated with CSF TNF concentrations were carried forward for analyses of pulmonary and meningeal tuberculosis susceptibility and TBM mortality. RESULTS: MUC5AC SNP rs28737416 T allele was associated with lower CSF concentrations of TNF (P = 1.8 × 10-8) and IFN-γ (P = 2.3 × 10-6). In an additive genetic model, rs28737416 T/T genotype was associated with higher susceptibility to TBM (odds ratio [OR], 1.24; 95% confidence interval [CI], 1.03-1.49; P = .02), but not pulmonary tuberculosis (OR, 1.11, 95% CI, .98-1.25; P = .10). TBM mortality was higher among participants with the rs28737416 T/T and T/C genotypes (35/119, 30.4%) versus the C/C genotype (11/89, 12.4%; log-rank P = .005) in a Vietnam discovery cohort (n = 210), an independent Vietnam validation cohort (n = 87; 9/87, 19.1% vs 1/20, 2.5%; log-rank P = .02), and an Indonesia validation cohort (n = 468, 127/287, 44.3% vs 65/181, 35.9%; log-rank P = .06). CONCLUSIONS: MUC5AC variants may contribute to immune changes that influence TBM outcomes.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/genetics , Tuberculosis, Meningeal/complications , Cytokines/genetics , Genotype , Tumor Necrosis Factor-alpha/genetics , Polymorphism, Single Nucleotide , Mucin 5AC/genetics
6.
Int J Obes (Lond) ; 47(5): 358-364, 2023 05.
Article in English | MEDLINE | ID: mdl-36788305

ABSTRACT

BACKGROUND: How obesity earlier in life impacts upon mobility dysfunctions in late life is not well understood. Pernicious effects of excess weight on the musculoskeletal system and mobility dysfunctions are well-recognized. However, increasingly more data support the link of obesity to overall motor defects that are regulated in the brain. OBJECTIVES: To assess the causal relationship between body mass index (BMI) at midlife and performance of the Timed Up-and-Go test (TUG) in late life among a population-based longitudinal cohort of Chinese adults living in Singapore. METHODS: We evaluated genetic predispositions for BMI in 8342 participants who were followed up from measurement of BMI at average 53 years, to TUG test (as a functional mobility measure) 20 years later. RESULTS: A robust 75.83% of genetically determined BMI effects on late-life TUG scores were mediated through midlife BMI (Pindirect-effect = 9.24 × 10-21). Utilizing Mendelian randomization, we demonstrated a causal effect between BMI and functional mobility in late life (ßIVW = 0.180, PIVW = 0.001). Secondary gene enrichment evaluations highlighted down-regulation of genes at BMI risk loci that were correlated with poorer functional mobility in the substantia nigra and amygdala regions as compared to all other tissues. These genes also exhibit differential expression patterns during human brain development. CONCLUSIONS: We report a causal effect of obesity on mobility dysfunction. Our findings highlight potential neuronal dysfunctions in regulating predispositions on the causal pathway from obesity to mobility dysfunction.


Subject(s)
Obesity , Weight Gain , Adult , Humans , Body Mass Index , Brain , Causality , Obesity/epidemiology , Obesity/genetics , Obesity/complications
7.
Ann Rheum Dis ; 82(6): 837-847, 2023 06.
Article in English | MEDLINE | ID: mdl-36797040

ABSTRACT

OBJECTIVES: The number of susceptibility loci currently associated with vasculitis is lower than in other immune-mediated diseases due in part to small cohort sizes, a consequence of the low prevalence of vasculitides. This study aimed to identify new genetic risk loci for the main systemic vasculitides through a comprehensive analysis of their genetic overlap. METHODS: Genome-wide data from 8467 patients with any of the main forms of vasculitis and 29 795 healthy controls were meta-analysed using ASSET. Pleiotropic variants were functionally annotated and linked to their target genes. Prioritised genes were queried in DrugBank to identify potentially repositionable drugs for the treatment of vasculitis. RESULTS: Sixteen variants were independently associated with two or more vasculitides, 15 of them representing new shared risk loci. Two of these pleiotropic signals, located close to CTLA4 and CPLX1, emerged as novel genetic risk loci in vasculitis. Most of these polymorphisms appeared to affect vasculitis by regulating gene expression. In this regard, for some of these common signals, potential causal genes were prioritised based on functional annotation, including CTLA4, RNF145, IL12B, IL5, IRF1, IFNGR1, PTK2B, TRIM35, EGR2 and ETS2, each of which has key roles in inflammation. In addition, drug repositioning analysis showed that several drugs, including abatacept and ustekinumab, could be potentially repurposed in the management of the analysed vasculitides. CONCLUSIONS: We identified new shared risk loci with functional impact in vasculitis and pinpointed potential causal genes, some of which could represent promising targets for the treatment of vasculitis.


Subject(s)
Systemic Vasculitis , Vasculitis , Humans , CTLA-4 Antigen , Drug Repositioning , Genetic Predisposition to Disease/genetics , Systemic Vasculitis/genetics , Vasculitis/drug therapy , Vasculitis/genetics , Apoptosis Regulatory Proteins/genetics
8.
J Transl Med ; 21(1): 92, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36750873

ABSTRACT

BACKGROUND: The popular statistics-based Genome-wide association studies (GWAS) have provided deep insights into the field of complex disorder genetics. However, its clinical applicability to predict disease/trait outcomes remains unclear as statistical models are not designed to make predictions. This study employs statistics-free machine-learning (ML)-optimized polygenic risk score (PRS) to complement existing GWAS and bring the prediction of disease/trait outcomes closer to clinical application. Rheumatoid Arthritis (RA) was selected as a model disease to demonstrate the robustness of ML in disease prediction as RA is a prevalent chronic inflammatory joint disease with high mortality rates, affecting adults at the economic prime. Early identification of at-risk individuals may facilitate measures to mitigate the effects of the disease. METHODS: This study employs a robust ML feature selection algorithm to identify single nucleotide polymorphisms (SNPs) that can predict RA from a set of training data comprising RA patients and population control samples. Thereafter, selected SNPs were evaluated for their predictive performances across 3 independent, unseen test datasets. The selected SNPs were subsequently used to generate PRS which was also evaluated for its predictive capacity as a sole feature. RESULTS: Through robust ML feature selection, 9 SNPs were found to be the minimum number of features for excellent predictive performance (AUC > 0.9) in 3 independent, unseen test datasets. PRS based on these 9 SNPs was significantly associated with (P < 1 × 10-16) and predictive (AUC > 0.9) of RA in the 3 unseen datasets. A RA ML-PRS calculator of these 9 SNPs was developed ( https://xistance.shinyapps.io/prs-ra/ ) to facilitate individualized clinical applicability. The majority of the predictive SNPs are protective, reside in non-coding regions, and are either predicted to be potentially functional SNPs (pfSNPs) or in high linkage disequilibrium (r2 > 0.8) with un-interrogated pfSNPs. CONCLUSIONS: These findings highlight the promise of this ML strategy to identify useful genetic features that can robustly predict disease and amenable to translation for clinical application.


Subject(s)
Arthritis, Rheumatoid , Polymorphism, Single Nucleotide , Adult , Humans , Genome-Wide Association Study , Genetic Predisposition to Disease , Risk Factors , Arthritis, Rheumatoid/genetics , Machine Learning
9.
Clin Chem ; 69(8): 881-889, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37477572

ABSTRACT

BACKGROUND: Current strategies for preimplantation genetic testing for aneuploidy or structural rearrangements (PGT-A/SR) rely mainly on next-generation sequencing (NGS) and microarray platforms, which are robust but require expensive instrumentation. We explored the suitability of third-generation single-molecule sequencing as a PGT-A/SR screening platform for both aneuploidy and segmental imbalance. METHODS: Single-cell and multicell replicates from aneuploid or segmentally unbalanced cell lines (n = 208) were SurePlex-amplified, randomized, and subjected to (a) Nanopore-based single-molecule sequencing (Oxford Nanopore Technologies) and (b) NGS using a leading commercial PGT-A solution (Illumina VeriSeq PGS). Archival SurePlex-amplified trophectoderm biopsy samples (n = 96) previously analyzed using the commercial kit were blinded and reanalyzed using Nanopore. RESULTS: Nanopore-based PGT-A identified the specific aberration in 95.45% (84/88) and 97.78% (88/90) of single-/multicells with an aneuploidy or segmental imbalance (10-30.5 Mb), respectively. Comparison against the commercial kit's results revealed concordances of 98.86% (87/88) and 98.89% (89/90) for the aneuploid and segmentally unbalanced (10-30.5 Mb aberration) samples, respectively. Detection sensitivity for smaller segmental imbalances (5-5.8 Mb aberration, n = 30) decreased markedly on both platforms. Nanopore-based PGT-A reanalysis of trophectoderm biopsy samples was 97.92% (94/96) concordant with the commercial kit results. CONCLUSION: Up to 24 SurePlex-amplified single-cell, multicell, or trophectoderm samples could be sequenced in a single MinION flow-cell for subsequent preimplantation genetic testing for aneuploidy or structural rearrangements (PGT-A/SR) analysis, with results obtainable in ≤3 days and at per-sample costs that are competitive with commercial offerings. Nanopore's third-generation single-molecule sequencing represents a viable alternative to current commercial NGS-based PGT-A solutions for aneuploidy and segmental imbalance (≥10 Mb) screening of single-/multicell or trophectoderm biopsy samples.


Subject(s)
Preimplantation Diagnosis , Pregnancy , Female , Humans , Preimplantation Diagnosis/methods , Genetic Testing/methods , Aneuploidy , High-Throughput Nucleotide Sequencing/methods , Gene Rearrangement
10.
BMC Med ; 20(1): 150, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35468796

ABSTRACT

BACKGROUND: Family history, and genetic and non-genetic risk factors can stratify women according to their individual risk of developing breast cancer. The extent of overlap between these risk predictors is not clear. METHODS: In this case-only analysis involving 7600 Asian breast cancer patients diagnosed between age 30 and 75 years, we examined identification of high-risk patients based on positive family history, the Gail model 5-year absolute risk [5yAR] above 1.3%, breast cancer predisposition genes (protein-truncating variants [PTV] in ATM, BRCA1, BRCA2, CHEK2, PALB2, BARD1, RAD51C, RAD51D, or TP53), and polygenic risk score (PRS) 5yAR above 1.3%. RESULTS: Correlation between 5yAR (at age of diagnosis) predicted by PRS and the Gail model was low (r=0.27). Fifty-three percent of breast cancer patients (n=4041) were considered high risk by one or more classification criteria. Positive family history, PTV carriership, PRS, or the Gail model identified 1247 (16%), 385 (5%), 2774 (36%), and 1592 (21%) patients who were considered at high risk, respectively. In a subset of 3227 women aged below 50 years, the four models studied identified 470 (15%), 213 (7%), 769 (24%), and 325 (10%) unique patients who were considered at high risk, respectively. For younger women, PRS and PTVs together identified 745 (59% of 1276) high-risk individuals who were not identified by the Gail model or family history. CONCLUSIONS: Family history and genetic and non-genetic risk stratification tools have the potential to complement one another to identify women at high risk.


Subject(s)
Breast Neoplasms , Asian People , Breast Neoplasms/diagnosis , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Risk Assessment
11.
Rheumatology (Oxford) ; 61(10): 4175-4186, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35094058

ABSTRACT

OBJECTIVE: To develop a hypothesis-free model that best predicts response to MTX drug in RA patients utilizing biologically meaningful genetic feature selection of potentially functional single nucleotide polymorphisms (pfSNPs) through robust machine learning (ML) feature selection methods. METHODS: MTX-treated RA patients with known response were divided in a 4:1 ratio into training and test sets. From the patients' exomes, potential features for classifier prediction were identified from pfSNPs and non-genetic factors through ML using recursive feature elimination with cross-validation incorporating the random forest classifier. Feature selection was repeated on random subsets of the training cohort, and consensus features were assembled into the final feature set. This feature set was evaluated for predictive potential using six ML classifiers, first by cross-validation within the training set, and finally by analysing its performance with the unseen test set. RESULTS: The final feature set contains 56 pfSNPs and five non-genetic factors. The majority of these pfSNPs are located in pathways related to RA pathogenesis or MTX action and are predicted to modulate gene expression. When used for training in six ML classifiers, performance was good in both the training set (area under the curve: 0.855-0.916; sensitivity: 0.715-0.892; and specificity: 0.733-0.862) and the unseen test set (area under the curve: 0.751-0.826; sensitivity: 0.581-0.839; and specificity: 0.641-0.923). CONCLUSION: Sensitive and specific predictors of MTX response in RA patients were identified in this study through a novel strategy combining biologically meaningful and machine learning feature selection and training. These predictors may facilitate better treatment decision-making in RA management.


Subject(s)
Arthritis, Rheumatoid , Methotrexate , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Cohort Studies , Humans , Machine Learning , Methotrexate/therapeutic use , Polymorphism, Single Nucleotide
12.
Rheumatology (Oxford) ; 61(3): 1204-1210, 2022 03 02.
Article in English | MEDLINE | ID: mdl-33993232

ABSTRACT

OBJECTIVES: Combining of genomic data of different pathologies as a single phenotype has emerged as a useful strategy to identify genetic risk loci shared among immune-mediated diseases. Our study aimed to increase our knowledge of the genetic contribution to Kawasaki disease (KD) and IgA vasculitis (IgAV) by performing the first comprehensive large-scale analysis on the genetic overlap between them. METHODS: A total of 1190 vasculitis patients and 11 302 healthy controls were analysed. First, in the discovery phase, genome-wide data of 405 KD patients and 6252 controls and 215 IgAV patients and 1324 controls, all of European origin, were combined using an inverse variance meta-analysis. Second, the top associated polymorphisms were selected for replication in additional independent cohorts (570 cases and 3726 controls). Polymorphisms with P-values ≤5 × 10-8 in the global IgAV-KD meta-analysis were considered as shared genetic risk loci. RESULTS: A genetic variant, rs3743841, located in an intron of the NAGPA gene, reached genome-wide significance in the cross-disease meta-analysis (P = 8.06 × 10-10). Additionally, when IgAV was individually analysed, a strong association between rs3743841 and this vasculitis was also evident [P = 1.25 × 10-7; odds ratio = 1.47 (95% CI 1.27, 1.69)]. In silico functional annotation showed that this polymorphism acts as a regulatory variant modulating the expression levels of the NAGPA and SEC14L5 genes. CONCLUSION: We identified a new risk locus with pleiotropic effects on the two childhood vasculitides analysed. This locus represents the strongest non-HLA signal described for IgAV to date.


Subject(s)
IgA Vasculitis/genetics , Mucocutaneous Lymph Node Syndrome/genetics , Phosphoric Diester Hydrolases/genetics , Genetic Loci , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide
13.
Ophthalmology ; 129(4): 406-413, 2022 04.
Article in English | MEDLINE | ID: mdl-34763023

ABSTRACT

PURPOSE: Carriers of functionally deficient mutations in the CYP39A1 gene have been recently reported to have a 2-fold increased risk of exfoliation syndrome (XFS). The aim of this study was to evaluate the risk of blindness and related clinical phenotypes of XFS patients carrying the loss-of-function CYP39A1 G204E mutation in comparison with XFS patients without any CYP39A1 mutation. DESIGN: Retrospective case study. PARTICIPANTS: A total of 35 patients diagnosed with XFS carrying the CYP39A1 G204E mutation and 150 XFS patients without any CYP39A1 mutation who were randomly selected from the Japanese XFS cohort. METHODS: Two-sided Fisher exact test with an alpha level < 0.05 was used to estimate the significance of the calculated odds ratio (OR) for all categorical measures. Comparisons between groups of subjects were performed using linear mixed effect models with group as random effect and taking possible dependence between eyes within a subject into account. MAIN OUTCOME MEASURES: Primary analysis compared the incidence of blindness (defined as visual acuity [VA] < 0.05 decimal), prevalence of exfoliation glaucoma (XFG), history of glaucoma surgery, and indices of glaucoma severity such as visual field (VF) mean deviation (MD), intraocular pressure (IOP), and vertical cup-disc ratio (CDR) between CYP39A1 G204E carriers and those without any CYP39A1 mutation. RESULTS: The overall risk for blindness was significantly higher in XFS patients carrying the CYP39A1 G204E variant (10/35 [28.6%]) compared with XFS patients without any CYP39A1 mutations (8/150 [5.4%]; odds ratio [OR], 7.1; 95% confidence interval [CI], 2.7-20.2]; P < 0.001). A higher proportion of XFS patients with the CYP39A1 G204E mutation (23/35 [65.7%]) had evidence of XFG in at least 1 eye compared with the comparison group (41/150 [27.3%]; OR, 5.1; 95% CI, 2.4-11.4]; P < 0.0001). Significantly higher peak IOP, larger vertical CDR, and worse VF MD were also found in CYP39A1 G204E variant carriers (P < 0.001). Additionally, patients with the CYP39A1 G204E mutation (18/35 [51.4%]) required more laser or glaucoma surgical interventions compared with those without any CYP39A1 mutation (32/150 [21.3%], P < 0.001). CONCLUSIONS: Patients with XFS carrying the CYP39A1 G204E mutation had significantly increased risk of blindness, higher occurrence of XFG, and more severe glaucoma compared with patients with XFS without any CYP39A1 mutation.


Subject(s)
Exfoliation Syndrome , Glaucoma , Steroid Hydroxylases , Blindness/genetics , Exfoliation Syndrome/complications , Exfoliation Syndrome/genetics , Glaucoma/complications , Glaucoma/genetics , Humans , Retrospective Studies , Steroid Hydroxylases/genetics , Visual Fields
14.
Blood ; 135(26): 2337-2353, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32157296

ABSTRACT

Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC) CML remains challenging because BC cells acquire complex molecular alterations that confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine kinase inhibitors. Comprehensive models of BC transformation have proved elusive because of the rarity and genetic heterogeneity of BC, but are important for developing biomarkers predicting BC progression and effective therapies. To better understand BC, we performed an integrated multiomics analysis of 74 CP and BC samples using whole-genome and exome sequencing, transcriptome and methylome profiling, and chromatin immunoprecipitation followed by high-throughput sequencing. Employing pathway-based analysis, we found the BC genome was significantly enriched for mutations affecting components of the polycomb repressive complex (PRC) pathway. While transcriptomically, BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets respectively. By integrating our data sets, we determined that BC progenitors undergo PRC-driven epigenetic reprogramming toward a convergent transcriptomic state. Specifically, PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing BC reprogramming (decitabine+PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene expression signatures predictive of disease progression and drug resistance in CP.


Subject(s)
Blast Crisis/genetics , Gene Expression Regulation, Leukemic/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Polycomb Repressive Complex 1/physiology , Polycomb Repressive Complex 2/physiology , Cell Differentiation , Chromatin Immunoprecipitation , DNA Methylation , Datasets as Topic , Enhancer of Zeste Homolog 2 Protein/physiology , Gene Dosage , Gene Ontology , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mutation , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 2/genetics , Transcriptome , Exome Sequencing , Whole Genome Sequencing
15.
Hum Reprod ; 37(6): 1351-1359, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35413122

ABSTRACT

STUDY QUESTION: Are there genetic variants that interact with smoking to reduce reproductive lifespan in East-Asian women? SUMMARY ANSWER: Our study corroborates several recently identified genetic loci associated with reproductive lifespan and highlights specific genetic predispositions that may interact with smoking status to adversely affect reproductive lifespan in East-Asian women. WHAT IS KNOWN ALREADY: Epidemiological data as well as evaluations on genetic predisposition to smoke indicate on the importance of smoking in adverse effects on reproductive lifespan in women. However, there are no previous smoking and gene interaction studies for reproductive traits in East-Asian women. STUDY DESIGN, SIZE, DURATION: This population-based prospective cohort study comprised 11 643 East-Asian Chinese women with overlapping genome-wide genotyping and reproductive data. PARTICIPANTS/MATERIALS, SETTING, METHODS: We performed a genome-wide association study for reproductive lifespan in women (n = 11 643) from the Singapore Chinese Health Study (SCHS) and carried out a genome-wide interaction study to identify loci that interacted with smoking status to affect age of natural menopause and reproductive-time. MAIN RESULTS AND THE ROLE OF CHANCE: Two known loci associated with menopause, rs113430717 (near HMCES, chromosome 3, Pmeta = 5.72 × 10-15) and rs3020136 (near RAD21, chromosome 8, Pmeta = 1.38 × 10-8) were observed beyond genome-wide levels of association with age at menopause in this study. For reproductive lifespan, the genome-wide association observed at rs79784106 (chromosome 3, Pmeta = 5.05 × 10-12) was in linkage disequilibrium with the menopause lead single-nucleotide polymorphism (SNP) (rs113430717). Four additional loci, first reported to be associated with menopause, were also associated with reproductive lifespan in our study (PAdj between 7.42 × 10-5 to 4.51 × 10-3). A significant interaction was observed between smoking and an East-Asian specific SNP, rs140146885, for reduced reproductive lifespan, per copy of the minor C allele (beta = -1.417 years, Pinteraction = 2.31 × 10-10). This interaction was successfully replicated in additional independent samples (beta = -1.389 years, Pinteraction = 6.78 × 10-3). Another known variant associated with menopause, rs11031006 (near FSHB), was also observed to interact with smoking status to reduce age at menopause in our dataset (beta = -0.450 years, Padj = 0.042). LIMITATIONS, REASONS FOR CAUTION: The modest sample size of the replication datasets used likely affected the statistical power to firmly replicate all identified novel loci observed in our smoking interaction analyses. WIDER IMPLICATIONS OF THE FINDINGS: Age of natural menopause and reproductive lifespan have clear genetic predispositions with distinct ethnic differences, and they may be adversely truncated by lifestyle factors such as smoking, which can pose a significant impact on the reproductive lifespan and future health outcomes in women. STUDY FUNDING/COMPETING INTEREST(S): The Singapore Chinese Health Study is funded by the National Medical Research Council, Singapore (NMRC/CIRG/1456/2016), National Institutes of Health (R01 CA144034 and UM1 CA182876) and National Research Foundation, Singapore (Project Number 370062002). W.-P.K. is supported by the National Medical Research Council, Singapore (MOH-CSASI19nov-0001). The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication. The authors do not report conflicts of interest. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Cigarette Smoking , Genetic Predisposition to Disease , China , Female , Genome-Wide Association Study , Humans , Longevity , Menopause/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Singapore/epidemiology
16.
Am J Hematol ; 97(9): 1159-1169, 2022 09.
Article in English | MEDLINE | ID: mdl-35726449

ABSTRACT

With lowering costs of sequencing and genetic profiling techniques, genetic drivers can now be detected readily in tumors but current prognostic models for Natural-killer/T cell lymphoma (NKTCL) have yet to fully leverage on them for prognosticating patients. Here, we used next-generation sequencing to sequence 260 NKTCL tumors, and trained a genomic prognostic model (GPM) with the genomic mutations and survival data from this retrospective cohort of patients using LASSO Cox regression. The GPM is defined by the mutational status of 13 prognostic genes and is weakly correlated with the risk-features in International Prognostic Index (IPI), Prognostic Index for Natural-Killer cell lymphoma (PINK), and PINK-Epstein-Barr virus (PINK-E). Cox-proportional hazard multivariate regression also showed that the new GPM is independent and significant for both progression-free survival (PFS, HR: 3.73, 95% CI 2.07-6.73; p < .001) and overall survival (OS, HR: 5.23, 95% CI 2.57-10.65; p = .001) with known risk-features of these indices. When we assign an additional risk-score to samples, which are mutant for the GPM, the Harrell's C-indices of GPM-augmented IPI, PINK, and PINK-E improved significantly (p < .001, χ2 test) for both PFS and OS. Thus, we report on how genomic mutational information could steer toward better prognostication of NKTCL patients.


Subject(s)
Epstein-Barr Virus Infections , Lymphoma, Extranodal NK-T-Cell , Disease-Free Survival , Genomics , Herpesvirus 4, Human , Humans , Prognosis , Retrospective Studies
17.
Lung ; 200(3): 401-407, 2022 06.
Article in English | MEDLINE | ID: mdl-35660961

ABSTRACT

Telomere attrition is an established ageing biomarker and shorter peripheral blood leukocyte telomere length has been associated with increased risks of respiratory diseases. However, whether telomere length in disease-relevant sputum immune cells of chronic respiratory disease patients is shortened and which pathways are dysfunctional are not clear. Here we measured telomere length from sputum samples of bronchiectasis and asthmatic subjects and determined that telomere length in sputum of bronchiectasis subjects was significantly shorter (Beta = - 1.167, PAdj = 2.75 × 10-4). We further performed global gene expression analysis and identified genes involved in processes such as NLRP3 inflammasome activation and regulation of adaptive immune cells when bronchiectasis sputum telomere length was shortened. Our study provides insights on dysfunctions related to shortened telomere length in sputum immune cells of bronchiectasis patients.


Subject(s)
Bronchiectasis , Sputum , Humans , Respiratory System , Telomere , Telomere Shortening
18.
BMC Musculoskelet Disord ; 23(1): 818, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36042462

ABSTRACT

BACKGROUND: Skeletal dysplasia is a heterogeneous group of disorders. Spondyloepiphyseal dysplasias comprise one subgroup. Deficiency of carbohydrate sulfotransferase 3 has been reported in a small number of patients with recessively inherited spondyloepiphyseal dysplasia with joint dislocation, short stature and scoliosis. We report here molecular and clinical findings of affected individuals in three consanguineous Pakistani families. Affected individuals in all three families had a uniform phenotype including severe short stature, multiple dislocated joints, progressive scoliosis and facial dysmorphism. METHODS: Clinical evaluation was done for three unrelated families. Radiological survey of bones was completed for patients from two of the families. Whole exome sequencing index patients from each family was performed followed by Sanger sequencing for validation of segregation of identified variants in respective families. In-silico analysis for determining pathogenicity of identified variants and conservation was done. RESULTS: Whole-exome sequencing revealed biallelic variants c.590 T > C;p.(Leu197Pro), c.603C > A;p.(Tyr201Ter) and c.661C > T;p.(Arg221Cys) in CHST3 (NM_004273.5) in the three families with eight, five and two affected individuals, respectively. Contrary to previous reports, affected individuals in none of the families exhibited a hearing loss. CONCLUSION: We describe genotypic and phenotypic findings of three unrelated families with spondyloepiphyseal dysplasia. Our study confirms phenotypic variability and adds to the genotypic spectrum of spondyloepiphyseal dysplasia.


Subject(s)
Joint Dislocations , Osteochondrodysplasias , Scoliosis , Sulfotransferases , Humans , Mutation , Osteochondrodysplasias/congenital , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/genetics , Pakistan , Pedigree , Phenotype , Sulfotransferases/genetics , Carbohydrate Sulfotransferases
19.
Hum Mol Genet ; 28(15): 2531-2548, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30986821

ABSTRACT

LOXL1 (lysyl oxidase-like 1) has been identified as the major effect locus in pseudoexfoliation (PEX) syndrome, a fibrotic disorder of the extracellular matrix and frequent cause of chronic open-angle glaucoma. However, all known PEX-associated common variants show allele effect reversal in populations of different ancestry, casting doubt on their biological significance. Based on extensive LOXL1 deep sequencing, we report here the identification of a common non-coding sequence variant, rs7173049A>G, located downstream of LOXL1, consistently associated with a decrease in PEX risk (odds ratio, OR = 0.63; P = 6.33 × 10-31) in nine different ethnic populations. We provide experimental evidence for a functional enhancer-like regulatory activity of the genomic region surrounding rs7173049 influencing expression levels of ISLR2 (immunoglobulin superfamily containing leucine-rich repeat protein 2) and STRA6 [stimulated by retinoic acid (RA) receptor 6], apparently mediated by allele-specific binding of the transcription factor thyroid hormone receptor beta. We further show that the protective rs7173049-G allele correlates with increased tissue expression levels of ISLR2 and STRA6 and that both genes are significantly downregulated in tissues of PEX patients together with other key components of the STRA6 receptor-driven RA signaling pathway. siRNA-mediated downregulation of RA signaling induces upregulation of LOXL1 and PEX-associated matrix genes in PEX-relevant cell types. These data indicate that dysregulation of STRA6 and impaired retinoid metabolism are involved in the pathophysiology of PEX syndrome and that the variant rs7173049-G, which represents the first common variant at the broad LOXL1 locus without allele effect reversal, mediates a protective effect through upregulation of STRA6 in ocular tissues.


Subject(s)
Amino Acid Oxidoreductases/genetics , Exfoliation Syndrome/genetics , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Signal Transduction , Tretinoin/metabolism , Aged , Aged, 80 and over , Cells, Cultured , Ethnicity/genetics , Exfoliation Syndrome/enzymology , Gene Expression Regulation , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Sequence Analysis, DNA
20.
Ophthalmology ; 128(3): 403-409, 2021 03.
Article in English | MEDLINE | ID: mdl-32682838

ABSTRACT

PURPOSE: To investigate whether recently identified genetic loci for primary angle-closure glaucoma (PACG) are associated with disease severity. DESIGN: Case-control study. PARTICIPANTS: Eight hundred four PACG patients and 943 control participants of Chinese ethnicity from Singapore. METHODS: The 8 PACG-associated single nucleotide polymorphisms (SNPs; rs11024102 at PLEKHA7, rs3753841 at COL11A1, rs1015213 located between PCMTD1 and ST18 on chromosome 8q, rs3816415 at EPDR1, rs1258267 at CHAT, rs736893 at GLIS3, rs7494379 at FERMT2, and rs3739821 mapping in between DPM2 and FAM102A) identified from genome-wide association studies were tested for association with disease severity using logistic regression adjusted for age and gender. A P value of 0.006 was set as significant after Bonferroni correction for testing of 8 loci. We also calculated the weighted genetic risk score (GRS) weighted by the estimated individual SNP effect size on PACG calculated as logarithm of the odds ratio (OR). Disease severity was based on the visual field mean deviation (MD) and classified as early to moderate (MD, >-12 dB) and severe (MD, <-20 dB). MAIN OUTCOME MEASURES: Association of PACG loci with severe disease. RESULTS: Of the 804 PACG patients, genotyping data were available for 768 individuals and included 436 with mild-to-moderate PACG and 206 with severe PACG. The PACG patients were significantly older (mean age, 64.3 ± 9.1 years vs. 56.4 ± 8.9 years; P < 0.001) and there were proportionately more women compared with control participants (58.4% vs. 49.0%; P < 0.001). Of the 8 loci investigated, we observed significant evidence of association with severe PACG at 1 SNP, namely rs3816415 in EPDR1 (OR, 2.03; 95% confidence interval [CI], 1.49-2.78; P = 1 × 10-5). A higher-weighted GRS was associated significantly with severe PACG, with an OR of 3.11 (95% CI, 1.95-4.96) comparing the lowest quartile with the highest quartile. CONCLUSIONS: Our results show that EPDR1 is associated significantly with severe PACG, suggesting that it may predispose patients to more aggressive disease development. Individuals with PACG with a higher GRS were associated with a higher risk of severe PACG.


Subject(s)
Genetic Predisposition to Disease/genetics , Glaucoma, Angle-Closure/genetics , Neoplasm Proteins/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Aged , Case-Control Studies , Female , Genome-Wide Association Study , Genotyping Techniques , Glaucoma, Angle-Closure/diagnosis , Humans , Male , Middle Aged , Odds Ratio , Risk Factors , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL