Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nature ; 538(7626): 518-522, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27750279

ABSTRACT

It is widely accepted that complex interactions between cancer cells and their surrounding microenvironment contribute to disease development, chemo-resistance and disease relapse. In light of this observed interdependency, novel therapeutic interventions that target specific cancer stroma cell lineages and their interactions are being sought. Here we studied a mouse model of human T-cell acute lymphoblastic leukaemia (T-ALL) and used intravital microscopy to monitor the progression of disease within the bone marrow at both the tissue-wide and single-cell level over time, from bone marrow seeding to development/selection of chemo-resistance. We observed highly dynamic cellular interactions and promiscuous distribution of leukaemia cells that migrated across the bone marrow, without showing any preferential association with bone marrow sub-compartments. Unexpectedly, this behaviour was maintained throughout disease development, from the earliest bone marrow seeding to response and resistance to chemotherapy. Our results reveal that T-ALL cells do not depend on specific bone marrow microenvironments for propagation of disease, nor for the selection of chemo-resistant clones, suggesting that a stochastic mechanism underlies these processes. Yet, although T-ALL infiltration and progression are independent of the stroma, accumulated disease burden leads to rapid, selective remodelling of the endosteal space, resulting in a complete loss of mature osteoblastic cells while perivascular cells are maintained. This outcome leads to a shift in the balance of endogenous bone marrow stroma, towards a composition associated with less efficient haematopoietic stem cell function. This novel, dynamic analysis of T-ALL interactions with the bone marrow microenvironment in vivo, supported by evidence from human T-ALL samples, highlights that future therapeutic interventions should target the migration and promiscuous interactions of cancer cells with the surrounding microenvironment, rather than specific bone marrow stroma, to combat the invasion by and survival of chemo-resistant T-ALL cells.


Subject(s)
Bone Marrow Cells/cytology , Leukemia-Lymphoma, Adult T-Cell/pathology , Neoplasm Transplantation , Tumor Microenvironment , Animals , Cell Movement , Disease Progression , Female , Hematopoietic Stem Cells/cytology , Humans , Intravital Microscopy , Male , Mice , Osteoblasts/cytology , Single-Cell Analysis
2.
Stem Cells ; 35(11): 2292-2304, 2017 11.
Article in English | MEDLINE | ID: mdl-28833970

ABSTRACT

The hematopoietic stem cell (HSC) niche provides essential microenvironmental cues for the production and maintenance of HSCs within the bone marrow. During inflammation, hematopoietic dynamics are perturbed, but it is not known whether changes to the HSC-niche interaction occur as a result. We visualize HSCs directly in vivo, enabling detailed analysis of the 3D niche dynamics and migration patterns in murine bone marrow following Trichinella spiralis infection. Spatial statistical analysis of these HSC trajectories reveals two distinct modes of HSC behavior: (a) a pattern of revisiting previously explored space and (b) a pattern of exploring new space. Whereas HSCs from control donors predominantly follow pattern (a), those from infected mice adopt both strategies. Using detailed computational analyses of cell migration tracks and life-history theory, we show that the increased motility of HSCs following infection can, perhaps counterintuitively, enable mice to cope better in deteriorating HSC-niche microenvironments following infection. Stem Cells 2017;35:2292-2304.


Subject(s)
Hematopoietic Stem Cells/metabolism , Infections/genetics , Animals , Cell Movement , Hematopoietic Stem Cells/cytology , Mice , Models, Theoretical , Phenotype
3.
Nat Cancer ; 4(8): 1193-1209, 2023 08.
Article in English | MEDLINE | ID: mdl-37550517

ABSTRACT

Aging facilitates the expansion of hematopoietic stem cells (HSCs) carrying clonal hematopoiesis-related somatic mutations and the development of myeloid malignancies, such as myeloproliferative neoplasms (MPNs). While cooperating mutations can cause transformation, it is unclear whether distinct bone marrow (BM) HSC-niches can influence the growth and therapy response of HSCs carrying the same oncogenic driver. Here we found different BM niches for HSCs in MPN subtypes. JAK-STAT signaling differentially regulates CDC42-dependent HSC polarity, niche interaction and mutant cell expansion. Asymmetric HSC distribution causes differential BM niche remodeling: sinusoidal dilation in polycythemia vera and endosteal niche expansion in essential thrombocythemia. MPN development accelerates in a prematurely aged BM microenvironment, suggesting that the specialized niche can modulate mutant cell expansion. Finally, dissimilar HSC-niche interactions underpin variable clinical response to JAK inhibitor. Therefore, HSC-niche interactions influence the expansion rate and therapy response of cells carrying the same clonal hematopoiesis oncogenic driver.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Aged , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/therapy , Myeloproliferative Disorders/pathology , Bone Marrow/pathology , Bone Marrow/physiology , Hematopoietic Stem Cells/pathology , Bone and Bones/pathology , Tumor Microenvironment/genetics
4.
PLoS One ; 17(9): e0272587, 2022.
Article in English | MEDLINE | ID: mdl-36099240

ABSTRACT

Multi-potent progenitor (MPP) cells act as a key intermediary step between haematopoietic stem cells and the entirety of the mature blood cell system. Their eventual fate determination is thought to be achieved through migration in and out of spatially distinct niches. Here we first analyze statistically MPP cell trajectory data obtained from a series of long time-course 3D in vivo imaging experiments on irradiated mouse calvaria, and report that MPPs display transient super-diffusion with apparent non-Gaussian displacement distributions. Second, we explain these experimental findings using a run-and-tumble model of cell motion which incorporates the observed dynamical heterogeneity of the MPPs. Third, we use our model to extrapolate the dynamics to time-periods currently inaccessible experimentally, which enables us to quantitatively estimate the time and length scales at which super-diffusion transitions to Fickian diffusion. Our work sheds light on the potential importance of motility in early haematopoietic progenitor function.


Subject(s)
Hematopoietic Stem Cells , Animals , Diffusion , Mice , Motion
5.
Bone ; 119: 19-35, 2019 02.
Article in English | MEDLINE | ID: mdl-29704697

ABSTRACT

Bone marrow contains numerous different cell types arising from hematopoietic stem cells (HSCs) and non-hematopoietic mesenchymal/skeletal stem cells, in addition to other cell types such as endothelial cells- these non-hematopoietic cells are commonly referred to as stromal cells or microenvironment cells. HSC function is intimately linked to complex signals integrated by their niches, formed by combinations of hematopoietic and stromal cells. Studies of hematopoietic cells have been significantly advanced by flow cytometry methods, enabling the quantitation of each cell type in normal and perturbed situations, in addition to the isolation of these cells for molecular and functional studies. Less is known, however, about the specific niches for distinct developing hematopoietic lineages, or the changes occurring in the niche size and function in these distinct anatomical sites in the bone marrow under stress situations and ageing. Significant advances in imaging technology during the last decade have permitted studies of HSC niches in mice. Additional imaging technologies are emerging that will facilitate the study of human HSC niches in trephine BM biopsies. Here we provide an overview of imaging technologies used to study HSC niches, in addition to highlighting emerging technology that will help us to more precisely identify and characterize HSC niches in normal and diseased states.


Subject(s)
Hematopoietic Stem Cells/cytology , Molecular Imaging/methods , Stem Cell Niche , Animals , Bone Marrow/physiology , Humans , Imaging, Three-Dimensional , Mice , Tissue Array Analysis
6.
J Clin Invest ; 128(5): 2010-2024, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29485974

ABSTRACT

A key predictor for the success of gene-modified T cell therapies for cancer is the persistence of transferred cells in the patient. The propensity of less differentiated memory T cells to expand and survive efficiently has therefore made them attractive candidates for clinical application. We hypothesized that redirecting T cells to specialized niches in the BM that support memory differentiation would confer increased therapeutic efficacy. We show that overexpression of chemokine receptor CXCR4 in CD8+ T cells (TCXCR4) enhanced their migration toward vascular-associated CXCL12+ cells in the BM and increased their local engraftment. Increased access of TCXCR4 to the BM microenvironment induced IL-15-dependent homeostatic expansion and promoted the differentiation of memory precursor-like cells with low expression of programmed death-1, resistance to apoptosis, and a heightened capacity to generate polyfunctional cytokine-producing effector cells. Following transfer to lymphoma-bearing mice, TCXCR4 showed a greater capacity for effector expansion and better tumor protection, the latter being independent of changes in trafficking to the tumor bed or local out-competition of regulatory T cells. Thus, redirected homing of T cells to the BM confers increased memory differentiation and antitumor immunity, suggesting an innovative solution to increase the persistence and functions of therapeutic T cells.


Subject(s)
Bone Marrow/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Movement/immunology , Immunologic Memory , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Bone Marrow/pathology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Chemokine CXCL12/genetics , Chemokine CXCL12/immunology , Humans , Interleukin-15/genetics , Interleukin-15/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/therapy , Receptors, CXCR4/genetics , Receptors, CXCR4/immunology , T-Lymphocytes, Regulatory/pathology
7.
Cell Stem Cell ; 22(1): 64-77.e6, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29276143

ABSTRACT

Bone marrow vascular niches sustain hematopoietic stem cells (HSCs) and are drastically remodeled in leukemia to support pathological functions. Acute myeloid leukemia (AML) cells produce angiogenic factors, which likely contribute to this remodeling, but anti-angiogenic therapies do not improve AML patient outcomes. Using intravital microscopy, we found that AML progression leads to differential remodeling of vasculature in central and endosteal bone marrow regions. Endosteal AML cells produce pro-inflammatory and anti-angiogenic cytokines and gradually degrade endosteal endothelium, stromal cells, and osteoblastic cells, whereas central marrow remains vascularized and splenic vascular niches expand. Remodeled endosteal regions have reduced capacity to support non-leukemic HSCs, correlating with loss of normal hematopoiesis. Preserving endosteal endothelium with the small molecule deferoxamine or a genetic approach rescues HSCs loss, promotes chemotherapeutic efficacy, and enhances survival. These findings suggest that preventing degradation of the endosteal vasculature may improve current paradigms for treating AML.


Subject(s)
Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Stem Cell Niche , Animals , Bone Marrow/blood supply , Bone Marrow/pathology , Cell Count , Hematopoiesis , Humans , Intravital Microscopy , Mice, Inbred C57BL , Spleen/pathology , Stromal Cells/pathology , Time Factors , Tumor Microenvironment
8.
Stem Cell Reports ; 5(1): 139-53, 2015 Jul 14.
Article in English | MEDLINE | ID: mdl-26120058

ABSTRACT

Measuring three-dimensional (3D) localization of hematopoietic stem cells (HSCs) within the bone marrow microenvironment using intravital microscopy is a rapidly expanding research theme. This approach holds the key to understanding the detail of HSC-niche interactions, which are critical for appropriate stem cell function. Due to the complex tissue architecture of the bone marrow and to the progressive introduction of scattering and signal loss at increasing imaging depths, there is no ready-made software to handle efficient segmentation and unbiased analysis of the data. To address this, we developed an automated image analysis tool that simplifies and standardizes the biological interpretation of 3D HSC microenvironment images. The algorithm identifies HSCs and measures their localization relative to surrounding osteoblast cells and bone collagen. We demonstrate here the effectiveness, consistency, and accuracy of the proposed approach compared to current manual analysis and its wider applicability to analyze other 3D bone marrow components.


Subject(s)
Bone Marrow/ultrastructure , Hematopoietic Stem Cells/ultrastructure , Intravital Microscopy , Stem Cell Niche , Humans , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL