Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nucleic Acids Res ; 52(11): 6234-6252, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38647066

ABSTRACT

Chromatin architecture regulates gene expression and shapes cellular identity, particularly in neuronal cells. Specifically, polycomb group (PcG) proteins enable establishment and maintenance of neuronal cell type by reorganizing chromatin into repressive domains that limit the expression of fate-determining genes and sustain distinct gene expression patterns in neurons. Here, we map the 3D genome architecture in neuronal and non-neuronal cells isolated from the Wernicke's area of four human brains and comprehensively analyze neuron-specific aspects of chromatin organization. We find that genome segregation into active and inactive compartments is greatly reduced in neurons compared to other brain cells. Furthermore, neuronal Hi-C maps reveal strong long-range interactions, forming a specific network of PcG-mediated contacts in neurons that is nearly absent in other brain cells. These interacting loci contain developmental transcription factors with repressed expression in neurons and other mature brain cells. But only in neurons, they are rich in bivalent promoters occupied by H3K4me3 histone modification together with H3K27me3, which points to a possible functional role of PcG contacts in neurons. Importantly, other layers of chromatin organization also exhibit a distinct structure in neurons, characterized by an increase in short-range interactions and a decrease in long-range ones.


Subject(s)
Chromatin , Genome, Human , Polycomb-Group Proteins , Humans , Brain/metabolism , Brain/cytology , Chromatin/metabolism , Chromatin/genetics , Histones/metabolism , Histones/genetics , Neurons/metabolism , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/genetics , Promoter Regions, Genetic
2.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36759336

ABSTRACT

The chromatin interaction assays, particularly Hi-C, enable detailed studies of genome architecture in multiple organisms and model systems, resulting in a deeper understanding of gene expression regulation mechanisms mediated by epigenetics. However, the analysis and interpretation of Hi-C data remain challenging due to technical biases, limiting direct comparisons of datasets obtained in different experiments and laboratories. As a result, removing biases from Hi-C-generated chromatin contact matrices is a critical data analysis step. Our novel approach, HiConfidence, eliminates biases from the Hi-C data by weighing chromatin contacts according to their consistency between replicates so that low-quality replicates do not substantially influence the result. The algorithm is effective for the analysis of global changes in chromatin structures such as compartments and topologically associating domains. We apply the HiConfidence approach to several Hi-C datasets with significant technical biases, that could not be analyzed effectively using existing methods, and obtain meaningful biological conclusions. In particular, HiConfidence aids in the study of how changes in histone acetylation pattern affect chromatin organization in Drosophila melanogaster S2 cells. The method is freely available at GitHub: https://github.com/victorykobets/HiConfidence.


Subject(s)
Drosophila melanogaster , Genome , Animals , Drosophila melanogaster/genetics , Chromatin/genetics , Chromosomes , Bias
3.
Biochemistry (Mosc) ; 89(3): 441-450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38648764

ABSTRACT

The Siberian frog Rana amurensis has a uniquely high tolerance to hypoxia among amphibians, as it is able to withstand several months underwater with almost no oxygen (0.2 mg/liter) vs. several days for other studied species. Since it was hypothesized that hypoxia actives the antioxidant defense system in hypoxia-tolerant animals, one would expect similar response in R. amurensis. Here, we studied the effect of hypoxia in the Siberian frog based on the transcriptomic data, activities of antioxidant enzyme, and content of low-molecular-weight antioxidants. Exposure to hypoxia upregulated expression of three relevant transcripts (catalase in the brain and two aldo-keto reductases in the liver). The activities of peroxidase in the blood and catalase in the liver were significantly increased, while the activity of glutathione S-transferase in the liver was reduced. The content of low-molecular-weight antioxidants (thiols and ascorbate) in the heart and liver was unaffected. In general, only a few components of the antioxidant defense system were affected by hypoxia, while most remained unchanged. Comparison to other hypoxia-tolerant species suggests species-specific adaptations to hypoxia-related ROS stress.


Subject(s)
Antioxidants , Hypoxia , Ranidae , Animals , Antioxidants/metabolism , Ranidae/metabolism , Hypoxia/metabolism , Liver/metabolism , Oxidative Stress , Catalase/metabolism
4.
Nucleic Acids Res ; 50(6): 3203-3225, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35166842

ABSTRACT

Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters' detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.


Subject(s)
Chromatin , Drosophila , Animals , Cell Differentiation/genetics , Chromatin/genetics , Dosage Compensation, Genetic , Drosophila/genetics , Germ Cells , Male
5.
J Cell Biochem ; 120(3): 4494-4503, 2019 03.
Article in English | MEDLINE | ID: mdl-30260021

ABSTRACT

Chromosomes in many organisms, including Drosophila and mammals, are folded into topologically associating domains (TADs). Increasing evidence suggests that TAD folding is hierarchical, wherein subdomains combine to form larger superdomains, instead of a sequence of nonoverlapping domains. Here, we studied the hierarchical structure of TADs in Drosophila. We show that the boundaries of TADs of different hierarchical levels are characterized by the presence of different portions of active chromatin, but do not vary in the binding of architectural proteins, such as CCCTC binding factor or cohesin. The apparent hierarchy of TADs in Drosophila chromosomes is not likely to have functional importance but rather reflects various options of long-range chromatin folding directed by the distribution of active and inactive chromatin segments and may represent population average.


Subject(s)
CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Chromosomes, Insect/metabolism , Drosophila Proteins/metabolism , Animals , CCCTC-Binding Factor/genetics , Chromatin/genetics , Chromosomes, Insect/genetics , Drosophila Proteins/genetics , Drosophila melanogaster
6.
Genome Res ; 26(1): 70-84, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26518482

ABSTRACT

Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)(+) RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin.


Subject(s)
Chromatin/genetics , Drosophila melanogaster/genetics , Genome, Insect , Transcription, Genetic , Animals , Cell Line , Chromatin Assembly and Disassembly , Chromosome Mapping , Computer Simulation , Models, Molecular , Nucleosomes/genetics , Nucleosomes/metabolism , Polytene Chromosomes/genetics , Sequence Analysis, RNA
7.
BMC Genet ; 18(Suppl 1): 110, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29297395

ABSTRACT

BACKGROUND: The history of human populations occupying the plains and mountain ridges separating Europe from Asia has been eventful, as these natural obstacles were crossed westward by multiple waves of Turkic and Uralic-speaking migrants as well as eastward by Europeans. Unfortunately, the material records of history of this region are not dense enough to reconstruct details of population history. These considerations stimulate growing interest to obtain a genetic picture of the demographic history of migrations and admixture in Northern Eurasia. RESULTS: We genotyped and analyzed 1076 individuals from 30 populations with geographical coverage spanning from Baltic Sea to Baikal Lake. Our dense sampling allowed us to describe in detail the population structure, provide insight into genomic history of numerous European and Asian populations, and significantly increase quantity of genetic data available for modern populations in region of North Eurasia. Our study doubles the amount of genome-wide profiles available for this region. We detected unusually high amount of shared identical-by-descent (IBD) genomic segments between several Siberian populations, such as Khanty and Ket, providing evidence of genetic relatedness across vast geographic distances and between speakers of different language families. Additionally, we observed excessive IBD sharing between Khanty and Bashkir, a group of Turkic speakers from Southern Urals region. While adding some weight to the "Finno-Ugric" origin of Bashkir, our studies highlighted that the Bashkir genepool lacks the main "core", being a multi-layered amalgamation of Turkic, Ugric, Finnish and Indo-European contributions, which points at intricacy of genetic interface between Turkic and Uralic populations. Comparison of the genetic structure of Siberian ethnicities and the geography of the region they inhabit point at existence of the "Great Siberian Vortex" directing genetic exchanges in populations across the Siberian part of Asia. Slavic speakers of Eastern Europe are, in general, very similar in their genetic composition. Ukrainians, Belarusians and Russians have almost identical proportions of Caucasus and Northern European components and have virtually no Asian influence. We capitalized on wide geographic span of our sampling to address intriguing question about the place of origin of Russian Starovers, an enigmatic Eastern Orthodox Old Believers religious group relocated to Siberia in seventeenth century. A comparative reAdmix analysis, complemented by IBD sharing, placed their roots in the region of the Northern European Plain, occupied by North Russians and Finno-Ugric Komi and Karelian people. Russians from Novosibirsk and Russian Starover exhibit ancestral proportions close to that of European Eastern Slavs, however, they also include between five to 10 % of Central Siberian ancestry, not present at this level in their European counterparts. CONCLUSIONS: Our project has patched the hole in the genetic map of Eurasia: we demonstrated complexity of genetic structure of Northern Eurasians, existence of East-West and North-South genetic gradients, and assessed different inputs of ancient populations into modern populations.


Subject(s)
Emigration and Immigration/history , Ethnicity/genetics , Genetics, Population , Algorithms , Asia , DNA , Datasets as Topic , Europe , Female , Genetic Variation , Genotyping Techniques , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Ancient , History, Medieval , Humans , Male , Russia
8.
RNA ; 18(1): 1-15, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22128342

ABSTRACT

Pre-mRNA structure impacts many cellular processes, including splicing in genes associated with disease. The contemporary paradigm of RNA structure prediction is biased toward secondary structures that occur within short ranges of pre-mRNA, although long-range base-pairings are known to be at least as important. Recently, we developed an efficient method for detecting conserved RNA structures on the genome-wide scale, one that does not require multiple sequence alignments and works equally well for the detection of local and long-range base-pairings. Using an enhanced method that detects base-pairings at all possible combinations of splice sites within each gene, we now report RNA structures that could be involved in the regulation of splicing in mammals. Statistically, we demonstrate strong association between the occurrence of conserved RNA structures and alternative splicing, where local RNA structures are generally more frequent at alternative donor splice sites, while long-range structures are more associated with weak alternative acceptor splice sites. As an example, we validated the RNA structure in the human SF1 gene using minigenes in the HEK293 cell line. Point mutations that disrupted the base-pairing of two complementary boxes between exons 9 and 10 of this gene altered the splicing pattern, while the compensatory mutations that reestablished the base-pairing reverted splicing to that of the wild-type. There is statistical evidence for a Dscam-like class of mammalian genes, in which mutually exclusive RNA structures control mutually exclusive alternative splicing. In sum, we propose that long-range base-pairings carry an important, yet unconsidered part of the splicing code, and that, even by modest estimates, there must be thousands of such potentially regulatory structures conserved throughout the evolutionary history of mammals.


Subject(s)
Alternative Splicing , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Splicing , Animals , Base Sequence , Conserved Sequence , Doublecortin-Like Kinases , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Molecular Sequence Data , Nucleic Acid Conformation , Protein Serine-Threonine Kinases/genetics , RNA Splice Sites , Sequence Analysis, RNA
9.
Aging Cell ; : e14283, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39072888

ABSTRACT

Epigenetic aging clocks have been widely used to validate rejuvenation effects during cellular reprogramming. However, these predictions are unverifiable because the true biological age of reprogrammed cells remains unknown. We present an analytical framework to consider rejuvenation predictions from the uncertainty perspective. Our analysis reveals that the DNA methylation profiles across reprogramming are poorly represented in the aging data used to train clock models, thus introducing high epistemic uncertainty in age estimations. Moreover, predictions of different published clocks are inconsistent, with some even suggesting zero or negative rejuvenation. While not questioning the possibility of age reversal, we show that the high clock uncertainty challenges the reliability of rejuvenation effects observed during in vitro reprogramming before pluripotency and throughout embryogenesis. Conversely, our method reveals a significant age increase after in vivo reprogramming. We recommend including uncertainty estimation in future aging clock models to avoid the risk of misinterpreting the results of biological age prediction.

10.
Commun Biol ; 7(1): 783, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951619

ABSTRACT

Transport of macromolecules through the nuclear envelope (NE) is mediated by nuclear pore complexes (NPCs) consisting of nucleoporins (Nups). Elys/Mel-28 is the Nup that binds and connects the decondensing chromatin with the reassembled NPCs at the end of mitosis. Whether Elys links chromatin with the NE during interphase is unknown. Here, using DamID-seq, we identified Elys binding sites in Drosophila late embryos and divided them into those associated with nucleoplasmic or with NPC-linked Elys. These Elys binding sites are located within active or inactive chromatin, respectively. Strikingly, Elys knockdown in S2 cells results in peripheral chromatin displacement from the NE, in decondensation of NE-attached chromatin, and in derepression of genes within. It also leads to slightly more compact active chromatin regions. Our findings indicate that NPC-linked Elys, together with the nuclear lamina, anchors peripheral chromatin to the NE, whereas nucleoplasmic Elys decompacts active chromatin.


Subject(s)
Chromatin , Drosophila Proteins , Interphase , Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Binding Sites , Cell Nucleus/metabolism , Chromatin/metabolism , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/embryology , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore Complex Proteins/genetics
11.
Nat Commun ; 15(1): 4455, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796479

ABSTRACT

Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain's structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.


Subject(s)
Brain , Lipidomics , Lipids , Humans , Animals , Brain/metabolism , Mice , Adult , Lipids/chemistry , Lipids/analysis , Male , Lipid Metabolism , Macaca , Neurons/metabolism , Female , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Myelin Sheath/metabolism , Middle Aged
12.
BMC Bioinformatics ; 13 Suppl 6: S4, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22537043

ABSTRACT

High-throughput sequencing of whole genomes and transcriptomes allows one to generate large amounts of sequence data very rapidly and at a low cost. The goal of most mRNA sequencing studies is to perform the comparison of the expression level between different samples. However, given a broad variety of modern sequencing protocols, platforms and versions thereof, it is not clear to what extent the obtained results are consistent across platforms and laboratories. The comparison of 117 human mRNA and genome high-throughput sequencing experiments performed on the Illumina and SOLiD platforms at 26 institutions all over the world demonstrated high dependency of the gene coverage profiles on the producing laboratory. Gene coverage profiles showed laboratory-specific non-uniformity that survived the 3'-bias correction and mappability normalization, suggesting that there are other yet unknown mRNA-associated biases.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA, Messenger/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Genome, Human , Humans , Transcriptome
13.
Nat Commun ; 12(1): 41, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397980

ABSTRACT

Mammalian and Drosophila genomes are partitioned into topologically associating domains (TADs). Although this partitioning has been reported to be functionally relevant, it is unclear whether TADs represent true physical units located at the same genomic positions in each cell nucleus or emerge as an average of numerous alternative chromatin folding patterns in a cell population. Here, we use a single-nucleus Hi-C technique to construct high-resolution Hi-C maps in individual Drosophila genomes. These maps demonstrate chromatin compartmentalization at the megabase scale and partitioning of the genome into non-hierarchical TADs at the scale of 100 kb, which closely resembles the TAD profile in the bulk in situ Hi-C data. Over 40% of TAD boundaries are conserved between individual nuclei and possess a high level of active epigenetic marks. Polymer simulations demonstrate that chromatin folding is best described by the random walk model within TADs and is most suitably approximated by a crumpled globule build of Gaussian blobs at longer distances. We observe prominent cell-to-cell variability in the long-range contacts between either active genome loci or between Polycomb-bound regions, suggesting an important contribution of stochastic processes to the formation of the Drosophila 3D genome.


Subject(s)
Drosophila melanogaster/genetics , Genome, Insect , Nucleic Acid Conformation , Animals , Biopolymers/metabolism , Chromatin/genetics , Databases, Genetic , Epigenesis, Genetic , Haploidy , Models, Genetic , Stochastic Processes , X Chromosome/genetics
14.
PeerJ Comput Sci ; 6: e307, 2020.
Article in English | MEDLINE | ID: mdl-33816958

ABSTRACT

Technological advances have lead to the creation of large epigenetic datasets, including information about DNA binding proteins and DNA spatial structure. Hi-C experiments have revealed that chromosomes are subdivided into sets of self-interacting domains called Topologically Associating Domains (TADs). TADs are involved in the regulation of gene expression activity, but the mechanisms of their formation are not yet fully understood. Here, we focus on machine learning methods to characterize DNA folding patterns in Drosophila based on chromatin marks across three cell lines. We present linear regression models with four types of regularization, gradient boosting, and recurrent neural networks (RNN) as tools to study chromatin folding characteristics associated with TADs given epigenetic chromatin immunoprecipitation data. The bidirectional long short-term memory RNN architecture produced the best prediction scores and identified biologically relevant features. Distribution of protein Chriz (Chromator) and histone modification H3K4me3 were selected as the most informative features for the prediction of TADs characteristics. This approach may be adapted to any similar biological dataset of chromatin features across various cell lines and species. The code for the implemented pipeline, Hi-ChiP-ML, is publicly available: https://github.com/MichalRozenwald/Hi-ChIP-ML.

15.
PeerJ ; 8: e9566, 2020.
Article in English | MEDLINE | ID: mdl-32864204

ABSTRACT

Regulation of gene transcription is a complex process controlled by many factors, including the conformation of chromatin in the nucleus. Insights into chromatin conformation on both local and global scales can be provided by the Hi-C (high-throughput chromosomes conformation capture) method. One of the drawbacks of Hi-C analysis and interpretation is the presence of systematic biases, such as different accessibility to enzymes, amplification, and mappability of DNA regions, which all result in different visibility of the regions. Iterative correction (IC) is one of the most popular techniques developed for the elimination of these systematic biases. IC is based on the assumption that all chromatin regions have an equal number of observed contacts in Hi-C. In other words, the IC procedure is equalizing the experimental visibility approximated by the cumulative contact frequency (CCF) for all genomic regions. However, the differences in experimental visibility might be explained by biological factors such as chromatin openness, which is characteristic of distinct chromatin states. Here we show that CCF is positively correlated with active transcription. It is associated with compartment organization, since compartment A demonstrates higher CCF and gene expression levels than compartment B. Notably, this observation holds for a wide range of species, including human, mouse, and Drosophila. Moreover, we track the CCF state for syntenic blocks between human and mouse and conclude that active state assessed by CCF is an intrinsic property of the DNA region, which is independent of local genomic and epigenomic context. Our findings establish a missing link between Hi-C normalization procedures removing CCF from the data and poorly investigated and possibly relevant biological factors contributing to CCF.

16.
Nat Commun ; 10(1): 1176, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862957

ABSTRACT

How the nuclear lamina (NL) impacts on global chromatin architecture is poorly understood. Here, we show that NL disruption in Drosophila S2 cells leads to chromatin compaction and repositioning from the nuclear envelope. This increases the chromatin density in a fraction of topologically-associating domains (TADs) enriched in active chromatin and enhances interactions between active and inactive chromatin. Importantly, upon NL disruption the NL-associated TADs become more acetylated at histone H3 and less compact, while background transcription is derepressed. Two-colour FISH confirms that a TAD becomes less compact following its release from the NL. Finally, polymer simulations show that chromatin binding to the NL can per se compact attached TADs. Collectively, our findings demonstrate a dual function of the NL in shaping the 3D genome. Attachment of TADs to the NL makes them more condensed but decreases the overall chromatin density in the nucleus by stretching interphase chromosomes.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/metabolism , Histones/metabolism , Nuclear Lamina/metabolism , Animals , Cell Line , Chromosomes, Insect/metabolism , Down-Regulation , Drosophila melanogaster , Gene Expression Profiling , Genes, Insect/genetics , In Situ Hybridization, Fluorescence , Models, Animal , Up-Regulation
17.
18.
J Bioinform Comput Biol ; 16(2): 1840011, 2018 04.
Article in English | MEDLINE | ID: mdl-29739306

ABSTRACT

Sequencing of complete nuclear genomes of Neanderthal and Denisovan stimulated studies about their relationship with modern humans demonstrating, in particular, that DNA alleles from both Neanderthal and Denisovan genomes are present in genomes of modern humans. The Papuan genome is a unique object because it contains both Neanderthal and Denisovan alleles. Here, we have shown that the Papuan genomes contain different gene functional groups inherited from each of the ancient people. The Papuan genomes demonstrate a relative prevalence of Neanderthal alleles in genes responsible for the regulation of transcription and neurogenesis. The enrichment of specific functional groups with Denisovan alleles is less pronounced; these groups are responsible for bone and tissue remodeling. This analysis shows that introgression of alleles from Neanderthals and Denisovans to Papuans occurred independently and retention of these alleles may carry specific adaptive advantages.


Subject(s)
Genome, Human , Hominidae/genetics , Alleles , Animals , Black People/genetics , Bone Remodeling/genetics , Cluster Analysis , Genetics, Population , Humans , Multigene Family , Neanderthals/genetics , Papua New Guinea , Polymorphism, Single Nucleotide , Transcription Factors/genetics
19.
Epigenetics Chromatin ; 10(1): 35, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28693562

ABSTRACT

BACKGROUND: In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. RESULTS: We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. CONCLUSIONS: Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing topologically associating domain.


Subject(s)
Avian Proteins/genetics , Chromatin/genetics , Transcriptional Activation , Up-Regulation , alpha-Globins/genetics , Animals , Avian Proteins/metabolism , CCCTC-Binding Factor/metabolism , Cell Line , Chickens , Chromatin/metabolism , Erythroid Cells/cytology , Erythroid Cells/metabolism , Erythropoiesis , Genes, Essential , Protein Binding , alpha-Globins/metabolism
20.
Sci Rep ; 7(1): 5, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28127055

ABSTRACT

Maximal lifespan of mammalian species, even if closely related, may differ more than 10-fold, however the nature of the mechanisms that determine this variability is unresolved. Here, we assess the relationship between maximal lifespan duration and concentrations of more than 20,000 lipid compounds, measured in 669 tissue samples from 6 tissues of 35 species representing three mammalian clades: primates, rodents and bats. We identify lipids associated with species' longevity across the three clades, uncoupled from other parameters, such as basal metabolic rate, body size, or body temperature. These lipids clustered in specific lipid classes and pathways, and enzymes linked to them display signatures of greater stabilizing selection in long-living species, and cluster in functional groups related to signaling and protein-modification processes. These findings point towards the existence of defined molecular mechanisms underlying variation in maximal lifespan among mammals.


Subject(s)
Chiroptera/physiology , Lipids/analysis , Longevity , Primates/physiology , Rodentia/physiology , Animals , Metabolic Networks and Pathways
SELECTION OF CITATIONS
SEARCH DETAIL