Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters

Publication year range
1.
Pediatr Cardiol ; 41(2): 341-349, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31953571

ABSTRACT

The heart is the first major organ to develop during embryogenesis and must receive proper spatiotemporal signaling for proper development. Failure of proper signaling between the first and second heart fields at twenty days gestation contributes to the generation of a congenital heart defect. The most common cyanotic congenital heart defect is tetralogy of Fallot (TOF) which requires surgical intervention in the first year of life. In right ventricular tissue of infants born with TOF, the levels of scaRNA1 are reduced and mRNA splicing is dysregulated. In this study, we investigate a method of quantifying pseudouridylation levels in relation to scaRNA1 levels in spliceosomal RNA U2 in three different groups of samples: right ventricular (RV) tissue of infants born with TOF versus RV tissue from normally developing infants, scaRNA1 knockdown in primary normal cardiomyocytes derived from normally developing infants, and scaRNA1 overexpression in primary cells derived from RV tissue from infants born with TOF. We hypothesize that the amount of pseudouridylation is dependent on scaRNA1 level, compromising spliceosomal function and therefore, contributing to the generation of a congenital heart defect. Our results revealed a statistically significant decrease of pseudouridylation levels in the right ventricular tissue of infants born with TOF compared to the controls. Knocking down the scaRNA1 levels in normal primary cardiomyocytes resulted in a statistically significant decrease of pseudouridylation. Finally, an overexpression of scaRNA1 in TOF primary cells resulted in an increase in pseudouridylation levels, but it did not achieve statistical significance. Our previous research provided an association between scaRNA levels, alternative splicing, and development. Here, we demonstrate that pseudouridylation levels in spliceosomal RNA U2 is dependent on the expression level of scaRNA1. Although further investigation is needed, we believe that scaRNA expression regulates biochemical modifications to spliceosomal RNAs, adjusting the fidelity of the spliceosome, allowing for controlled alternative splicing of mRNA that is important in embryonic development. If validated, this is an underappreciated mechanism that is critical for regulating proper embryonic development.


Subject(s)
Embryonic Development/genetics , Heart/embryology , RNA, Small Nuclear , Alternative Splicing , Humans , Infant , RNA, Messenger/metabolism , Spliceosomes , Tetralogy of Fallot/embryology , Tetralogy of Fallot/genetics
2.
Biochim Biophys Acta ; 1852(8): 1619-29, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25916634

ABSTRACT

Alternative splicing (AS) plays an important role in regulating mammalian heart development, but a link between misregulated splicing and congenital heart defects (CHDs) has not been shown. We reported that more than 50% of genes associated with heart development were alternatively spliced in the right ventricle (RV) of infants with tetralogy of Fallot (TOF). Moreover, there was a significant decrease in the level of 12 small cajal body-specific RNAs (scaRNAs) that direct the biochemical modification of specific nucleotides in spliceosomal RNAs. We sought to determine if scaRNA levels influence patterns of AS and heart development. We used primary cells derived from the RV of infants with TOF to show a direct link between scaRNA levels and splice isoforms of several genes that regulate heart development (e.g., GATA4, NOTCH2, DAAM1, DICER1, MBNL1 and MBNL2). In addition, we used antisense morpholinos to knock down the expression of two scaRNAs (scarna1 and snord94) in zebrafish and saw a corresponding disruption of heart development with an accompanying alteration in splice isoforms of cardiac regulatory genes. Based on these combined results, we hypothesize that scaRNA modification of spliceosomal RNAs assists in fine tuning the spliceosome for dynamic selection of mRNA splice isoforms. Our results are consistent with disruption of splicing patterns during early embryonic development leading to insufficient communication between the first and second heart fields, resulting in conotruncal misalignment and TOF. Our findings represent a new paradigm for determining the mechanisms underlying congenital cardiac malformations.


Subject(s)
Alternative Splicing/genetics , Coiled Bodies/genetics , Heart/embryology , Heart/growth & development , MicroRNAs/physiology , Animals , Animals, Genetically Modified , Cells, Cultured , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Heart Defects, Congenital/embryology , Heart Defects, Congenital/genetics , Humans , Infant , Infant, Newborn , Vertebrates/embryology , Vertebrates/genetics , Vertebrates/growth & development , Zebrafish
3.
Hum Genomics ; 8: 6, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24618031

ABSTRACT

Congenital heart defects (CHD) are the most common cause of death in children under the age of 1. Tetralogy of Fallot (TOF) is a severe CHD that results from developmental defects in the conotruncal outflow tract. Recently, a tissue-specific gene expression template (GET) was derived from microarray data that accurately characterized multiple normal human tissues. We used the GET to examine spatial, temporal, and a pathological condition (TOF) within a single organ, the heart. The GET, as previously defined, generally identified temporal and spatial differences in the cardiac tissue. Differences in the stoichiometry of the GET reflected the severe developmental disturbance associated with TOF. Our analysis suggests that the homoeostatic equilibrium assessed by the GET at the inter-organ level is generally maintained at the intra-organ level as well.


Subject(s)
Gene Expression Regulation, Developmental , Heart/growth & development , Myocardium/metabolism , Tetralogy of Fallot/genetics , Adult , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Middle Aged , Organ Specificity , Tetralogy of Fallot/pathology
4.
Genes Cells ; 17(5): 420-30, 2012 May.
Article in English | MEDLINE | ID: mdl-22487217

ABSTRACT

This study profiled transcriptomes of human pulmonary microvascular endothelial cells (HMVEC-L) treated with pre-B-cell colony-enhancing factor (PBEF) siRNA or scrambled RNA to gain insight into transcriptional regulations of PBEF on the endothelial function using the Affymetrix GeneChips HG-U133 plus 2. Several important themes are emerged from this study. First, PBEF affected expressions of multiple genes in the endothelium. Expression of 373 genes was increased and 64 genes decreased by at least 1.3-fold in the PBEFsiRNA-treated HMVEC-L versus the scramble RNA control. Second, the microarray results confirmed previous reports of PBEF-mediated gene expressions in some pathways but provided a more complete repertoire of molecules in those pathways. Third, most of the affected canonical pathways have not previously been reported to be PBEF responsive. Fourth, network analysis supports that PBEF has pleiotropic functions. Our first transcriptome analysis of human pulmonary microvascular endothelial cells treated with PBEFsiRNA has provided important insights into the transcriptional regulation of gene expression in HMVEC-L cells by PBEF. Further in-depth analysis of these transcriptional regulations may shed light on molecular mechanisms underlying PBEF-mediated endothelial functions and dysfunctions in various diseases and provide new leads of therapeutic targets to those diseases.


Subject(s)
Endothelial Cells/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , RNA, Small Interfering/genetics , Transcriptome , Cells, Cultured , Gene Expression Regulation , Genetic Pleiotropy , Humans , Oligonucleotide Array Sequence Analysis , Transfection
5.
J Pers Med ; 13(9)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37763179

ABSTRACT

Autism Spectrum Disorder (ASD) has been associated with a complex interplay between genetic and environmental factors. Prenatal stress exposure has been identified as a possible risk factor, although most stress-exposed pregnancies do not result in ASD. The serotonin transporter (SERT) gene has been linked to stress reactivity, and the presence of the SERT short (S)-allele has been shown to mediate the association between maternal stress exposure and ASD. In a mouse model, we investigated the effects of prenatal stress exposure and maternal SERT genotype on offspring behavior and explored its association with maternal microRNA (miRNA) expression during pregnancy. Pregnant female mice were divided into four groups based on genotype (wildtype or SERT heterozygous knockout (Sert-het)) and the presence or absence of chronic variable stress (CVS) during pregnancy. Offspring behavior was assessed at 60 days old (PD60) using the three-chamber test, open field test, elevated plus-maze test, and marble-burying test. We found that the social preference index (SPI) of SERT-het/stress offspring was significantly lower than that of wildtype control offspring, indicating a reduced preference for social interaction on social approach, specifically for males. SERT-het/stress offspring also showed significantly more frequent grooming behavior compared to wildtype controls, specifically for males, suggesting elevated repetitive behavior. We profiled miRNA expression in maternal blood samples collected at embryonic day 21 (E21) and identified three miRNAs (mmu-miR-7684-3p, mmu-miR-5622-3p, mmu-miR-6900-3p) that were differentially expressed in the SERT-het/stress group compared to all other groups. These findings suggest that maternal SERT genotype and prenatal stress exposure interact to influence offspring behavior, and that maternal miRNA expression late in pregnancy may serve as a potential marker of a particular subtype of ASD pathogenesis.

6.
JCI Insight ; 6(1)2021 01 11.
Article in English | MEDLINE | ID: mdl-33232305

ABSTRACT

Cardiopulmonary bypass (CPB) is required during most cardiac surgeries. CBP drives systemic inflammation and multiorgan dysfunction that is especially severe in neonatal patients. Limited understanding of molecular mechanisms underlying CPB-associated inflammation presents a significant barrier to improve clinical outcomes. To better understand these clinical issues, we performed mRNA sequencing on total circulating leukocytes from neonatal patients undergoing CPB. Our data identify myeloid cells, particularly monocytes, as the major cell type driving transcriptional responses to CPB. Furthermore, IL-8 and TNF-α were inflammatory cytokines robustly upregulated in leukocytes from both patients and piglets exposed to CPB. To delineate the molecular mechanism, we exposed THP-1 human monocytic cells to CPB-like conditions, including artificial surfaces, high shear stress, and cooling/rewarming. Shear stress was found to drive cytokine upregulation via calcium-dependent signaling pathways. We also observed that a subpopulation of THP-1 cells died via TNF-α-mediated necroptosis, which we hypothesize contributes to post-CPB inflammation. Our study identifies a shear stress-modulated molecular mechanism that drives systemic inflammation in pediatric CPB patients. These are also the first data to our knowledge to demonstrate that shear stress causes necroptosis. Finally, we observe that calcium and TNF-α signaling are potentially novel targets to ameliorate post-CPB inflammation.


Subject(s)
Cardiopulmonary Bypass/adverse effects , Cytokines/genetics , Monocytes/immunology , Monocytes/pathology , Animals , Animals, Newborn , Calcium Signaling , Cytokines/biosynthesis , Female , Heart Defects, Congenital/surgery , Humans , Infant , Infant, Newborn , Inflammation Mediators/metabolism , Interleukin-8/biosynthesis , Interleukin-8/genetics , Male , Models, Animal , Monocytes/physiology , Necroptosis/genetics , Necroptosis/physiology , RNA-Seq , Stress, Mechanical , Sus scrofa , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/immunology , THP-1 Cells , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Up-Regulation
7.
Am J Med Genet A ; 152A(2): 404-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20082457

ABSTRACT

We present an infant girl with a de novo interstitial deletion of the chromosome 15q11-q14 region, larger than the typical deletion seen in Prader-Willi syndrome (PWS). She presented with features seen in PWS including hypotonia, a poor suck, feeding problems, and mild micrognathia. She also presented with features not typically seen in PWS such as preauricular ear tags, a high-arched palate, edematous feet, coarctation of the aorta, a PDA, and a bicuspid aortic valve. G-banded chromosome analysis showed a large de novo deletion of the proximal long arm of chromosome 15 confirmed using FISH probes (D15511 and GABRB3). Methylation testing was abnormal and consistent with the diagnosis of PWS. Because of the large appearing deletion by karyotype analysis, an array comparative genomic hybridization (aCGH) was performed. A 12.3 Mb deletion was found which involved the 15q11-q14 region containing approximately 60 protein coding genes. This rare deletion was approximately twice the size of the typical deletion seen in PWS and involved the proximal breakpoint BP1 and the distal breakpoint was located in the 15q14 band between previously recognized breakpoints BP5 and BP6. The deletion extended slightly distal to the AVEN gene including the neighboring CHRM5 gene. There is no evidence that the genes in the 15q14 band are imprinted; therefore, their potential contribution in this patient's expanded PWS phenotype must be a consequence of dosage sensitivity of the genes or due to altered expression of intact neighboring genes from a position effect.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 15 , Prader-Willi Syndrome/diagnosis , Prader-Willi Syndrome/genetics , Child, Preschool , Chromosome Aberrations , Comparative Genomic Hybridization , Cytogenetics , Female , Humans , In Situ Hybridization, Fluorescence , Karyotyping , Phenotype
8.
PLoS One ; 14(12): e0226035, 2019.
Article in English | MEDLINE | ID: mdl-31805133

ABSTRACT

Understanding the regulation of development can help elucidate the pathogenesis behind many developmental defects found in humans and other vertebrates. Evidence has shown that alternative splicing of messenger RNA (mRNA) plays a role in developmental regulation, but our knowledge of the underlying mechanisms that regulate alternative splicing are incomplete. Notably, a subset of small noncoding RNAs known as scaRNAs (small cajal body associated RNAs) contribute to spliceosome maturation and function through guiding covalent modification of spliceosomal RNAs with either methylation or pseudouridylation on specific nucleotides, but the developmental significance of these modifications is not well understood. Our focus is on one such scaRNA, known as SNORD94 or U94, that guides methylation on one specific cytosine (C62) on spliceosomal RNA U6, thus potentially altering spliceosome function during embryogenesis. We previously showed that in the myocardium of infants with heart defects, mRNA is alternatively spliced as compared to control tissues. We also demonstrated that alternatively spliced genes were concentrated in the pathways that control heart development. Furthermore, we showed that modifying expression of scaRNAs alters mRNA splicing in human cells, and zebrafish embryos. Here we present evidence that SNORD94 levels directly influence levels of methylation at its target region in U6, suggesting a potential mechanism for modifying alternative splicing of mRNA. The potential importance of scaRNAs as a developmentally important regulatory mechanism controlling alternative splicing of mRNA is unappreciated and needs more research.


Subject(s)
Cytosine/metabolism , Gene Expression Regulation , RNA, Small Nucleolar/genetics , Spliceosomes/genetics , Female , Humans , Male , Methylation
9.
J Thorac Cardiovasc Surg ; 158(3): 882-890.e4, 2019 09.
Article in English | MEDLINE | ID: mdl-31005300

ABSTRACT

OBJECTIVES: Brain injury, leading to long-term neurodevelopmental deficits, is a major complication in neonates undergoing cardiac surgeries. Because the striatum is one of the most vulnerable brain regions, we used mRNA sequencing to unbiasedly identify transcriptional changes in the striatum after cardiopulmonary bypass and associated deep hypothermic circulatory arrest. METHODS: Piglets were subjected to cardiopulmonary bypass with deep hypothermic circulatory arrest at 18°C for 30 minutes and then recovered for 6 hours. mRNA sequencing was performed to compare changes in gene expression between the striatums of sham control and deep hypothermic circulatory arrest brains. RESULTS: We found 124 significantly upregulated genes and 74 significantly downregulated genes in the striatums of the deep hypothermic circulatory arrest group compared with the sham controls. Pathway enrichment analysis demonstrated that inflammation and apoptosis were the strongest pathways activated after surgery. Chemokines CXCL9, CXCL10, and CCL2 were the top upregulated genes with 32.4-fold, 22.2-fold, and 17.6-fold increased expression, respectively, in the deep hypothermic circulatory arrest group compared with sham controls. Concomitantly, genes involved in cell proliferation, cell-cell adhesion, and structural integrity were significantly downregulated in the deep hypothermic circulatory arrest group. Analysis of promoter regions of all upregulated genes revealed over-representation of nuclear factor-kB transcription factor binding sites. CONCLUSIONS: Our study provides a comprehensive view of global transcriptional changes in the striatum after deep hypothermic circulatory arrest and found strong activation of both inflammatory and apoptotic signaling pathways in the deep hypothermic circulatory arrest group. Nuclear factor-kB, a key driver of inflammation, appears to be an upstream regulator of the majority of the upregulated genes; hence, nuclear factor-kB inhibitors could potentially be tested for beneficial effects on neurologic outcome.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Circulatory Arrest, Deep Hypothermia Induced/adverse effects , Cytokines/genetics , Gene Expression Profiling , Inflammation Mediators , Neostriatum/pathology , Transcriptome , Animals , Animals, Newborn , Apoptosis Regulatory Proteins/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Neostriatum/metabolism , Signal Transduction , Sus scrofa
10.
Am J Med Genet A ; 146A(7): 854-60, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18266248

ABSTRACT

Prader-Willi syndrome (PWS) is due to loss of paternally expressed genes in the 15q11-q13 region generally from a paternal 15q11-q13 deletion. The proximal deletion breakpoint in the 15q11-q13 region occurs at one of two sites located within either of two large duplicons allowing for identification of two typical deletion subgroups. The larger type I (TI) deletion involving breakpoint 1 (BP1) is nearer to the centromere and located proximal to the microsatellite marker D15S1035, while the smaller type II (TII) deletion involves breakpoint 2 (BP2) and distal to D15S1035. Breakpoint 3 (BP3) is located at the distal end of the 15q11-q13 region and common to both typical deletion subgroups. Using high resolution aCGH, BP1 spanned a region from 18.683 to 20.220 Mb, BP2 from 20.812 to 21.357 Mb and BP3 from 25.941 to 27.286 Mb. The TI deletion ranged in size from 5.721 to 8.147 Mb (mean 6.583) and the type II deletion from 4.770 to 6.435 Mb (mean 5.330). A subset of the TI subjects showed larger deletions including the loss of at least three genes/transcripts (i.e., LOC283755, POTE5, OR4N4) in addition to the four genes between BP1 and BP2 (i.e., GCP5, CYFIP1, NIPA1, NIPA2). Interestingly, four PWS subjects had duplications of the 15q11 region in addition to the typical deletion. Furthermore, most PWS subjects had copy number variation (CNV) of 50 kb or larger in other chromosome regions; most common were deletions and duplications of 8p and 3q, previously recognized sites of CNV in the human genome.


Subject(s)
Nucleic Acid Hybridization , Prader-Willi Syndrome/genetics , Adolescent , Adult , Chromosome Deletion , Chromosomes, Human, Pair 15 , Female , Humans , In Situ Hybridization, Fluorescence , Male
11.
J Cardiovasc Dev Dis ; 5(2)2018 May 08.
Article in English | MEDLINE | ID: mdl-29738469

ABSTRACT

Congenital heart disease (CHD) is a leading cause of death in children <1 year of age. Despite intense effort in the last 10 years, most CHDs (~70%) still have an unknown etiology. Conotruncal based defects, such as Tetralogy of Fallot (TOF), a common complex of devastating heart defects, typically requires surgical intervention in the first year of life. We reported that the noncoding transcriptome in myocardial tissue from children with TOF is characterized by significant variation in levels of expression of noncoding RNAs, and more specifically, a significant reduction in 12 small cajal body-associated RNAs (scaRNAs) in the right ventricle. scaRNAs are essential for the biochemical modification and maturation of small nuclear RNAs (spliceosomal RNAs), which in turn are critical components of the spliceosome. This is particularly important because we also documented that splicing of mRNAs that are critical for heart development was dysregulated in the heart tissue of infants with TOF. Furthermore, we went on to show, using the zebrafish model, that altering the expression of these same scaRNAs led to faulty mRNA processing and heart defects in the developing embryo. This review will examine how scaRNAs may influence spliceosome fidelity in exon retention during heart development and thus contribute to regulation of heart development.

12.
Genet Test ; 11(4): 467-75, 2007.
Article in English | MEDLINE | ID: mdl-18294067

ABSTRACT

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurodevelopmental disorders caused by loss of expression of imprinted genes from the 15q11-q13 region. They arise from similar defects in the region but differ in parent of origin. There are two recognized typical 15q11-q13 deletions depending on size and several diagnostic assays are available but each has limitations. We evaluated the usefulness of a methylation-specific multiplex ligation-dependent probe amplification (MLPA) kit consisting of 43 probes to detect copy number changes and methylation status in the region. We used the MLPA kit to genotype 82 subjects with chromosome 15 abnormalities (62 PWS, 10 AS and 10 individuals with other chromosome 15 abnormalities) and 13 with normal cytogenetic findings. We developed an algorithm for MLPA probe analysis which correctly identified methylation abnormalities associated with PWS and AS and accurately determined copy number in previously assigned genetic subtypes including microdeletions of the imprinting center. Furthermore, MLPA analysis identified copy number changes in those with distal 15q deletions and ring 15s. MLPA is a relatively simple, cost-effective technique found to be useful and accurate for methylation status, copy number and analysis of genetic subtype in PWS and AS, as well as other chromosome 15 abnormalities.


Subject(s)
Angelman Syndrome/diagnosis , Chromosome Aberrations , Chromosomes, Human, Pair 15 , DNA Methylation , Nucleic Acid Amplification Techniques/methods , Prader-Willi Syndrome/diagnosis , Adolescent , Adult , Algorithms , Angelman Syndrome/genetics , Child , Child, Preschool , Female , Gene Dosage , Humans , Infant , Male , Nucleic Acid Probes , Prader-Willi Syndrome/genetics
13.
Int J Mol Med ; 15(4): 707-11, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15754036

ABSTRACT

Ghrelin and peptide YY (PYY) are peptides generally produced by the gastrointestinal organs which are involved in appetite regulation via highly specialized centers in the brain. Abnormal plasma ghrelin and PYY levels compared with controls have been reported for subjects with Prader-Willi syndrome (PWS) which is characterized by infantile hypotonia, poor suck reflex and failure to thrive followed by hyperphagia and marked obesity in early childhood. We studied gene expression of ghrelin, peptide YY, and their receptors (i.e., GHS-R1a, GHS-R1b, and NPY2R) in six different brain regions (frontal cortex, temporal cortex, visual cortex, pons, medulla, and hypothalamus) obtained from three subjects with PWS, two individuals with Angelman syndrome, and six controls to determine if expression of these genes is detectable in different regions of the brain in subjects with and without PWS. In general, expression of these genes using RT-PCR was detected in all subjects and no obvious differences were seen in their pattern of expression between subjects with or without PWS. Additional studies including quantitative gene expression measurements will be required to further evaluate the role of these genes in the eating disorder seen in PWS.


Subject(s)
Brain/metabolism , Peptide Hormones/genetics , Peptide YY/genetics , Prader-Willi Syndrome/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Gastrointestinal Hormone/genetics , Adult , Aged , Child, Preschool , Feeding Behavior/physiology , Female , Ghrelin , Humans , Hyperphagia/genetics , Hyperphagia/metabolism , Infant , Male , Middle Aged , Obesity/genetics , Obesity/metabolism , Peptide Hormones/biosynthesis , Peptide YY/metabolism , Prader-Willi Syndrome/genetics , Receptors, G-Protein-Coupled/biosynthesis , Receptors, Gastrointestinal Hormone/biosynthesis , Receptors, Ghrelin , Reverse Transcriptase Polymerase Chain Reaction
14.
Prog Pediatr Cardiol ; 20(2): 127-141, 2005 Jul.
Article in English | MEDLINE | ID: mdl-28529438

ABSTRACT

Developmental abnormalities of the heart are the underlying cause of many congenital heart malformations. The embryological development of the integrated cardiovascular tissue is the result of multiple tissue and cell-to-cell interactions involving temporal and spatial events under genetic control. Recent technological advances, like microarray analysis of gene expression, are providing new tools to aid in deciphering the complex networks of gene expression that regulate cardiac development. Here, we review our current understanding of the genetics of congenital heart disorders with emphasis on gene expression studies and report preliminary data from infants with conotruncal defects. We report our microarray analysis showing over- and underexpression of individual genes and gene network interactions from dysplastic pulmonic tissue from two infants with tetralogy of Fallot compared with normal pulmonic tissue from an unaffected control infant.

15.
Cells ; 3(3): 713-23, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25257024

ABSTRACT

The importance of microRNAs for maintaining stability in the developing vertebrate heart has recently become apparent. In addition, there is a growing appreciation for the significance of microRNAs in developmental pathology, including the formation of congenital heart defects. We examined the expression of microRNAs in right ventricular (RV) myocardium from infants with idiopathic tetralogy of Fallot (TOF, without a 22q11.2 deletion), and found 61 microRNAs to be significantly changed in expression in myocardium from children with TOF compared to normally developing comparison subjects (O'Brien et al. 2012). Predicted targets of microRNAs with altered expression were enriched for gene networks that regulate cardiac development. We previously derived a list of 229 genes known to be critical to heart development, and found 44 had significantly changed expression in TOF myocardium relative to normally developing myocardium. These 44 genes had significant negative correlations with 33 microRNAs, each of which also had significantly changed expression. Here, we focus on miR-421, as it is significantly upregulated in RV tissue from infants with TOF; is predicted to interact with multiple members of cardiovascular regulatory pathways; and has been shown to regulate cell proliferation. We knocked down, and over expressed miR-421 in primary cells derived from the RV of infants with TOF, and infants with normally developing hearts, respectively. We found a significant inverse correlation between the expression of miR-421 and SOX4, a key regulator of the Notch pathway, which has been shown to be important for the cardiac outflow track. These findings suggest that the dysregulation of miR-421 warrants further investigation as a potential contributor to tetralogy of Fallot.

16.
PLoS One ; 9(1): e87472, 2014.
Article in English | MEDLINE | ID: mdl-24498113

ABSTRACT

Tetralogy of Fallot (TOF) is one of the most common severe congenital heart malformations. Great progress has been made in identifying key genes that regulate heart development, yet approximately 70% of TOF cases are sporadic and nonsyndromic with no known genetic cause. We created an ultra high-resolution gene centric comparative genomic hybridization (gcCGH) microarray based on 591 genes with a validated association with cardiovascular development or function. We used our gcCGH array to analyze the genomic structure of 34 infants with sporadic TOF without a deletion on chromosome 22q11.2 (n male = 20; n female = 14; age range of 2 to 10 months). Using our custom-made gcCGH microarray platform, we identified a total of 613 copy number variations (CNVs) ranging in size from 78 base pairs to 19.5 Mb. We identified 16 subjects with 33 CNVs that contained 13 different genes which are known to be directly associated with heart development. Additionally, there were 79 genes from the broader list of genes that were partially or completely contained in a CNV. All 34 individuals examined had at least one CNV involving these 79 genes. Furthermore, we had available whole genome exon arrays from right ventricular tissue in 13 of our subjects. We analyzed these for correlations between copy number and gene expression level. Surprisingly, we could detect only one clear association between CNVs and expression (GSTT1) for any of the 591 focal genes on the gcCGH array. The expression levels of GSTT1 were correlated with copy number in all cases examined (r = 0.95, p = 0.001). We identified a large number of small CNVs in genes with varying associations with heart development. Our results illustrate the complexity of human genome structural variation and underscore the need for multifactorial assessment of potential genetic/genomic factors that contribute to congenital heart defects.


Subject(s)
DNA Copy Number Variations , Gene Expression Regulation , Genome, Human , Oligonucleotide Array Sequence Analysis , Tetralogy of Fallot/genetics , Female , Gene Expression Profiling , Genome-Wide Association Study , Glutathione Transferase/biosynthesis , Heart Ventricles/metabolism , Humans , Infant , Male , Tetralogy of Fallot/metabolism
17.
Eur J Hum Genet ; 21(10): 1093-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23361223

ABSTRACT

We identified a novel homozygous 15q13.3 microdeletion in a young boy, with a complex neurodevelopmental disorder characterized by severe cerebral visual impairment with additional signs of congenital stationary night blindness, congenital hypotonia with areflexia, profound intellectual disability, and refractory epilepsy. The mechanisms by which the genes in the deleted region exert their effect are unclear. In this paper, we probed the role of downstream effects of the deletions as a contributing mechanism to the molecular basis of the observed phenotype. We analyzed gene expression of lymphoblastoid cells derived from peripheral blood of the proband and his relatives to ascertain the relative effects of the homozygous and heterozygous deletions. We identified 267 genes with apparent differential expression between the proband with the homozygous deletion and 3 age- and sex-matched typically developing controls. Several of the differentially expressed genes are known to influence neurodevelopment and muscular function, and thus may contribute to the observed cognitive impairment and hypotonia. We further investigated the role of CHRNA7 by measuring TNFα modulation (a potentially important pathway in regulating synaptic plasticity). We found that the cell line with the homozygous deletion lost the ability to inhibit the activation of tumor necrosis factor-α secretion. Our findings suggest downstream genes that may have been altered by the 15q13.3 homozygous deletion, and thus contributed to the severe developmental encephalopathy of the proband. Furthermore, we show that a potentially important pathway in learning and development is affected by the deletion of CHRNA7.


Subject(s)
Chromosome Disorders/genetics , Genome, Human , Homozygote , Intellectual Disability/genetics , Seizures/genetics , Transcriptome , Adolescent , Adult , Aged , Case-Control Studies , Child , Chromosome Deletion , Chromosome Disorders/diagnosis , Chromosome Disorders/metabolism , Chromosomes, Human, Pair 15/genetics , Chromosomes, Human, Pair 15/metabolism , Female , Humans , Intellectual Disability/diagnosis , Intellectual Disability/metabolism , Male , Middle Aged , Pedigree , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seizures/diagnosis , Seizures/metabolism , Tumor Necrosis Factor-alpha/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
18.
PLoS One ; 8(3): e58767, 2013.
Article in English | MEDLINE | ID: mdl-23536823

ABSTRACT

Nicotinamide phosphoribosyltransferase (Nampt) is a rate-limiting enzyme in the mammalian NAD+ biosynthesis of a salvage pathway and exists in 2 known forms, intracellular Nampt (iNampt) and a secreted form, extracellular Nampt (eNampt). eNampt can generate an intermediate product, nicotinamide mononucleotide (NMN), which has been reported to support insulin secretion in pancreatic islets. Nampt has been reported to be expressed in the pancreas but islet specific expression has not been adequately defined. The aim of this study was to characterize Nampt expression, secretion and regulation by glucose in human islets. Gene and protein expression of Nampt was assessed in human pancreatic tissue and isolated islets by qRT-PCR and immunofluorescence/confocal imaging respectively. Variable amounts of Nampt mRNA were detected in pancreatic tissue and isolated islets. Immunofluorescence staining for Nampt was found in the exocrine and endocrine tissue of fetal pancreas. However, in adulthood, Nampt expression was localized predominantly in beta cells. Isolated human islets secreted increasing amounts of eNampt in response to high glucose (20 mM) in a static glucose-stimulated insulin secretion assay (GSIS). In addition to an increase in eNampt secretion, exposure to 20 mM glucose also increased Nampt mRNA levels but not protein content. The secretion of eNampt was attenuated by the addition of membrane depolarization inhibitors, diazoxide and nifedipine. Islet-secreted eNampt showed enzymatic activity in a reaction with increasing production of NAD+/NADH over time. In summary, we show that Nampt is expressed in both exocrine and endocrine tissue early in life but in adulthood expression is localized to endocrine tissue. Enzymatically active eNampt is secreted by human islets, is regulated by glucose and requires membrane depolarization.


Subject(s)
Gene Expression Regulation , Islets of Langerhans/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , Enzyme Activation , Female , Gene Expression Regulation/drug effects , Glucagon/metabolism , Glucose/metabolism , Glucose/pharmacology , Humans , Infant , Infant, Newborn , Insulin/metabolism , Islets of Langerhans/drug effects , Male , Middle Aged , Nicotinamide Phosphoribosyltransferase/metabolism , Pancreas/drug effects , Pancreas/metabolism , Protein Binding , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Young Adult
19.
Circ Cardiovasc Genet ; 5(3): 279-86, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22528145

ABSTRACT

BACKGROUND: The importance of noncoding RNAs (ncRNA), especially microRNAs (miRNAs), for maintaining stability in the developing vertebrate heart has recently become apparent; however, there is little known about the expression pattern of ncRNA in the human heart with developmental anomalies. METHODS AND RESULTS: We examined the expression of miRNAs and small nucleolar RNAs (snoRNAs) in right ventricular myocardium from 16 infants with nonsyndromic tetralogy of Fallot (TOF) without a 22q11.2 deletion, 3 fetal heart samples, and 8 normally developing infants. We found 61 miRNAs and 135 snoRNAs to be significantly changed in expression in myocardium from children with TOF compared with normally developing comparison subjects. The pattern of ncRNA expression in TOF myocardium had a surprising resemblance to expression patterns in fetal myocardium, especially for the snoRNAs. Potential targets of miRNAs with altered expression were enriched for gene networks of importance to cardiac development. We derived a list of 229 genes known to be critical to heart development and found 44 had significantly changed expression in TOF myocardium relative to normally developing myocardium. These 44 genes had significant negative correlation with 33 miRNAs, each of which also had significantly changed expression. The primary function of snoRNAs is targeting specific nucleotides of ribosomal RNAs and spliceosomal RNAs for biochemical modification. The targeted nucleotides of the differentially expressed snoRNAs were concentrated in the 28S and 18S ribosomal RNAs and 2 spliceosomal RNAs, U2 and U6. In addition, in myocardium from children with TOF, we observed splicing variants in 51% of genes that are critical for cardiac development. Taken together, these observations suggest a link between levels of snoRNA that target spliceosomal RNAs, spliceosomal function, and heart development. CONCLUSIONS: This is the first report characterizing ncRNA expression in a congenital heart defect. The striking shift in expression of ncRNAs reflects a fundamental change in cell biology, likely impacting expression, transcript splicing, and translation of developmentally important genes and possibly contributing to the cardiac defect.


Subject(s)
Myocardium/metabolism , RNA, Untranslated/metabolism , Tetralogy of Fallot/genetics , Child, Preschool , Cluster Analysis , Female , Humans , Infant , Male , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Untranslated/genetics
20.
BMC Med Genomics ; 4: 1, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21208432

ABSTRACT

BACKGROUND: Tetralogy of Fallot (TOF) is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot. METHODS: We employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery) obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions) and compared gene expression patterns to normally developing subjects. RESULTS: We detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV) of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation). However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, p = 0.017 and Notch, p = 0.003) appeared to be generally suppressed. CONCLUSIONS: The suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.


Subject(s)
Cardiovascular System/metabolism , Tetralogy of Fallot/genetics , Case-Control Studies , Child , Female , Gene Expression , Genome-Wide Association Study , Heart/embryology , Heart Ventricles/metabolism , Humans , Infant , Male , Oligonucleotide Array Sequence Analysis , Pulmonary Artery/metabolism , Pulmonary Valve/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL