ABSTRACT
BACKGROUND: Four-dimensional (4D) flow MRI allows for the quantification of complex flow patterns; however, its clinical use is limited by its inherently long acquisition time. Compressed sensing (CS) is an acceleration technique that provides substantial reduction in acquisition time. PURPOSE: To compare intracardiac flow measurements between conventional and CS-based highly accelerated 4D flow acquisitions. STUDY TYPE: Prospective. SUBJECTS: Fifty healthy volunteers (28.0 ± 7.1 years, 24 males). FIELD STRENGTH/SEQUENCE: Whole heart time-resolved 3D gradient echo with three-directional velocity encoding (4D flow) with conventional parallel imaging (factor 3) as well as CS (factor 7.7) acceleration at 3 T. ASSESSMENT: 4D flow MRI data were postprocessed by applying a valve tracking algorithm. Acquisition times, flow volumes (mL/cycle) and diastolic function parameters (ratio of early to late diastolic left ventricular peak velocities [E/A] and ratio of early mitral inflow velocity to mitral annular early diastolic velocity [E/e']) were quantified by two readers. STATISTICAL TESTS: Paired-samples t-test and Wilcoxon rank sum test to compare measurements. Pearson correlation coefficient (r), Bland-Altman-analysis (BA) and intraclass correlation coefficient (ICC) to evaluate agreement between techniques and readers. A P value < 0.05 was considered statistically significant. RESULTS: A significant improvement in acquisition time was observed using CS vs. conventional accelerated acquisition (6.7 ± 1.3 vs. 12.0 ± 1.3 min). Net forward flow measurements for all valves showed good correlation (r > 0.81) and agreement (ICCs > 0.89) between conventional and CS acceleration, with 3.3%-8.3% underestimation by the CS technique. Evaluation of diastolic function showed 3.2%-17.6% error: E/A 2.2 [1.9-2.4] (conventional) vs. 2.3 [2.0-2.6] (CS), BA bias 0.08 [-0.81-0.96], ICC 0.82; and E/e' 4.6 [3.9-5.4] (conventional) vs. 3.8 [3.4-4.3] (CS), BA bias -0.90 [-2.31-0.50], ICC 0.89. DATA CONCLUSION: Analysis of intracardiac flow patterns and evaluation of diastolic function using a highly accelerated 4D flow sequence prototype is feasible, but it shows underestimation of flow measurements by approximately 10%. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.
Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Male , Humans , Prospective Studies , Blood Flow Velocity , Imaging, Three-Dimensional/methods , Mitral Valve/diagnostic imaging , Reproducibility of ResultsABSTRACT
OBJECTIVES: This study determined: 1) the interobserver agreement; 2) valvular flow variation; and 3) which variables independently predicted the variation of valvular flow quantification from 4-dimensional (4D) flow cardiac magnetic resonance (CMR) with automated retrospective valve tracking at multiple sites. BACKGROUND: Automated retrospective valve tracking in 4D flow CMR allows consistent assessment of valvular flow through all intracardiac valves. However, due to the variance of CMR scanners and protocols, it remains uncertain if the published consistency holds for other clinical centers. METHODS: Seven sites each retrospectively or prospectively selected 20 subjects who underwent whole heart 4D flow CMR (64 patients and 76 healthy volunteers; aged 32 years [range 24 to 48 years], 47% men, from 2014 to 2020), which was acquired with locally used CMR scanners (scanners from 3 vendors; 2 1.5-T and 5 3-T scanners) and protocols. Automated retrospective valve tracking was locally performed at each site to quantify the valvular flow and repeated by 1 central site. Interobserver agreement was evaluated with intraclass correlation coefficients (ICCs). Net forward volume (NFV) consistency among the valves was evaluated by calculating the intervalvular variation. Multiple regression analysis was performed to assess the predicting effect of local CMR scanners and protocols on the intervalvular inconsistency. RESULTS: The interobserver analysis demonstrated strong-to-excellent agreement for NFV (ICC: 0.85 to 0.96) and moderate-to-excellent agreement for regurgitation fraction (ICC: 0.53 to 0.97) for all sites and valves. In addition, all observers established a low intervalvular variation (≤10.5%) in their analysis. The availability of 2 cine images per valve for valve tracking compared with 1 cine image predicted a decreasing variation in NFV among the 4 valves (beta = -1.3; p = 0.01). CONCLUSIONS: Independently of locally used CMR scanners and protocols, valvular flow quantification can be performed consistently with automated retrospective valve tracking in 4D flow CMR.