Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Gastroenterology ; 165(3): 613-628.e20, 2023 09.
Article in English | MEDLINE | ID: mdl-37257519

ABSTRACT

BACKGROUND & AIMS: Despite recent progress in identifying aberrant genetic and epigenetic alterations in esophageal squamous cell carcinoma (ESCC), the mechanism of ESCC initiation remains unknown. METHODS: Using CRISPR/Cas 9-based genetic ablation, we targeted 9 genes (TP53, CDKN2A, NOTCH1, NOTCH3, KMT2D, KMT2C, FAT1, FAT4, and AJUBA) in murine esophageal organoids. Transcriptomic phenotypes of organoids and chemokine released by organoids were analyzed by single-cell RNA sequencing. Tumorigenicity and immune evasion of organoids were monitored by allograft transplantation. Human ESCC single-cell RNA sequencing data sets were analyzed to classify patients and find subsets relevant to organoid models and immune evasion. RESULTS: We established 32 genetically engineered esophageal organoids and identified key genetic determinants that drive ESCC initiation. A single-cell transcriptomic analysis uncovered that Trp53, Cdkn2a, and Notch1 (PCN) triple-knockout induces neoplastic features of ESCC by generating cell lineage heterogeneity and high cell plasticity. PCN knockout also generates an immunosuppressive niche enriched with exhausted T cells and M2 macrophages via the CCL2-CCR2 axis. Mechanistically, CDKN2A inactivation transactivates CCL2 via nuclear factor-κB. Moreover, comparative single-cell transcriptomic analyses stratified patients with ESCC and identified a specific subtype recapitulating the PCN-type ESCC signatures, including the high expression of CCL2 and CD274/PD-L1. CONCLUSIONS: Our study unveils that loss of TP53, CDKN2A, and NOTCH1 induces esophageal neoplasia and immune evasion for ESCC initiation and proposes the CCL2 blockade as a viable option for targeting PCN-type ESCC.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Animals , Mice , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Immune Evasion/genetics , Mutation , LIM Domain Proteins/genetics
2.
Nanotechnology ; 33(30)2022 May 06.
Article in English | MEDLINE | ID: mdl-35428034

ABSTRACT

MoS2crystals grown by chemical vapor deposition are suited for realization of practical 2D semiconductor-based electronics. In order to construct complementary circuits with n-type MoS2, another p-type semiconductor, whose performance can be adjusted corresponding to that of MoS2in the limited chip area, has to be sought. Herein, we present a method for tuning switching threshold voltages of complementary inverters simply via inkjet printing without changing their channel dimensions. Random networks of inkjet printed single-walled carbon nanotubes are formed as p-channels beside MoS2, and their density and thickness are controlled by varying the number of printed layers. As a result, p-type transistor characteristics as well as inverter characteristics are facilely tuned only by varying the number of printed layers.

3.
BMC Cancer ; 21(1): 137, 2021 Feb 06.
Article in English | MEDLINE | ID: mdl-33549040

ABSTRACT

BACKGROUND: Prostate cancers frequently metastasize to bone, where the best microenvironment for distant colonization is provided. Since osteotropic metastasis of prostate cancer is a critical determinant of patients' survival, searches for preventive measures are ongoing in the field. Therefore, it is important to dissect the mechanisms of each step of bone metastasis, including the epithelial-mesenchymal transition (EMT) and cross-talk between metastatic niches and cancer cells. METHODS: In this study, we established a highly bone-metastatic subline of human prostate cancer cells by selecting bone-homing population of PC3 cells after cardiac injection of eight-week-old male BALB/c-nude mice. Then we assessed the proliferation, EMT characteristics, and migration properties of the subline (mtPC3) cells in comparison with the parental PC3 cells. To investigate the role of S100A4, we performed gene knock-down by lentiviral transduction, or treated cells with recombinant S100A4 protein or a S100A4-neutralizing antibody. The effect of cancer cells on osteoclastogenesis was evaluated after treatment of pre-osteoclasts with conditioned medium (CM) from cancer cells. RESULTS: The mtPC3 cells secreted a markedly high level of S100A4 protein and showed elevated cell proliferation and mesenchymal properties. The increased proliferation and EMT traits of mtPC3 cells was inhibited by S100A4 knock-down, but was not affected by exogenous S100A4. Furthermore, S100A4 released from mtPC3 cells stimulated osteoclast development via the cell surface receptor RAGE. Down-regulation or neutralization of S100A4 in the CM of mtPC3 cells attenuated cancer-induced osteoclastogenesis. CONCLUSION: Altogether, our results suggest that intracellular S100A4 promotes cell proliferation and EMT characteristics in tumor cells, and that secreted S100A4 activates osteoclastogenesis, contributing to osteolytic bone metastasis. Thus, S100A4 upregulation in cancer cells highly metastatic to bone might be a key element in regulating bone metastasis.


Subject(s)
Bone Neoplasms/secondary , Cell Proliferation , Epithelial-Mesenchymal Transition , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , S100 Calcium-Binding Protein A4/metabolism , Animals , Cell Communication , Cell Differentiation , Cell Movement , Culture Media, Conditioned/pharmacology , Down-Regulation , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Osteoclasts/cytology , Osteoclasts/drug effects , Osteogenesis/drug effects , PC-3 Cells , S100 Calcium-Binding Protein A4/genetics , Up-Regulation
4.
J Immunol ; 202(12): 3359-3369, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31076532

ABSTRACT

Haptoglobin (Hp), a type of acute-phase protein, is known to have a systemic anti-inflammatory function and to modulate inflammation by directly affecting immune cells, such as T cells, dendritic cells, and macrophages. However, the effects of Hp on osteoclast differentiation are not well studied, even though osteoclast precursor cells belong to a macrophage-monocyte lineage. In this study, we found that the bone volume was reduced, and the number of osteoclasts was increased in Hp-deficient mice compared with wild-type mice. Moreover, our in vitro studies showed that Hp inhibits osteoclastogenesis by reducing the protein level of c-Fos at the early phase of osteoclast differentiation. We revealed that Hp-induced suppression of c-Fos was mediated by increased IFN-ß levels. Furthermore, Hp stimulated IFN-ß via a TLR4-dependent mechanism. These results demonstrate that Hp plays a protective role against excessive osteoclastogenesis via the Hp-TLR4-IFN-ß axis.


Subject(s)
Haptoglobins/metabolism , Interferon-beta/metabolism , Osteoclasts/physiology , Acute-Phase Reaction , Animals , Bone Resorption/genetics , Cell Differentiation , Cells, Cultured , Haptoglobins/genetics , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Osteogenesis , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Signal Transduction
5.
Sensors (Basel) ; 21(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918278

ABSTRACT

In this paper, we introduce mapping results in an indoor environment based on our own developed dual-mode radar sensor. Our radar system uses a frequency-modulated continuous wave (FMCW) with a center frequency of 62 GHz and a multiple-input multiple-output antenna system. In addition, the FMCW radar sensor we designed is capable of dual-mode detection, which alternately transmits two waveforms using different bandwidths within one frame. The first waveform is for long-range detection, and the second waveform is for short-range detection. This radar system is mounted on a small robot that moves in indoor environments such as rooms or hallways, and the radar and the robot send and receive necessary information to each other. The radar estimates the distance, velocity, and angle information of targets around the radar-equipped robot. Then, the radar receives information about the robot's motion from the robot, such as its speed and rotation angle. Finally, by combining the motion information and the detection results, the radar-equipped robot maps the indoor environment while finding its own position. Compared to the actual map data, the radar-based mapping is effectively achieved through the radar system we developed.

6.
Biochem Biophys Res Commun ; 516(1): 202-208, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31204051

ABSTRACT

Mitofusin 2 (Mfn2) is a mitochondrial outer membrane protein that participates in tethering mitochondria to the ER. Mitochondria-ER tethering has been demonstrated to play important roles in many cellular activities by regulating homeostasis of metabolites and calcium. Intracellular calcium signaling is crucial for the differentiation of osteoclasts, the bone-resorbing cells. In this study, we investigated whether Mfn2 plays a role in osteoclastogenesis by receptor activator of nuclear factor kappa B (RANKL) in primary cells. We found that RANKL increased Mfn2 expression during osteoclast formation from mouse bone marrow-derived macrophages (BMMs). When Mfn2 expression was suppressed in BMMs by using a siRNA-mediated gene knock-down system, osteoclast differentiation and activity of mature osteoclasts were reduced. Mfn2 knock-down also decreased the RANKL-mediated induction of NFATc1, the key transcription factor for osteoclast gene expression, without affecting c-Fos level. This effect on NFATc1 was associated with decreased calcium oscillation and calcineurin activity in Mfn2-deficient osteoclasts. Taken together, our results indicate that Mfn2 positively contributes to RANKL-induced osteoclast differentiation by regulating the calcium-calcieurin-NFATc1 axis, raising the importance of a previously under-recognized role of mitochondria in osteoclastogenesis.


Subject(s)
Calcineurin/metabolism , Calcium/metabolism , GTP Phosphohydrolases/metabolism , NFATC Transcription Factors/metabolism , Osteogenesis , Signal Transduction , Animals , Calcium Signaling , Cells, Cultured , Male , Mice , Mice, Inbred ICR , Mitochondria/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism
7.
Nanotechnology ; 31(10): 105602, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31739292

ABSTRACT

A gas sensor based on a hierarchical WS2 structure embedded with vertically aligned WS2 nanocrystallites was demonstrated. The three-dimensional (3D) hierarchical structure provides many edge sites of nanocrystallites and an extremely large gas contact volume, resulting in a high gas response. The decreased contact resistance between the 3D hierarchical WS2 fibers and sensor electrode resulted in improved NO2 response. We fabricated a one-dimensional (1D) conductive WS2 fiber using a two-step annealing process under sulfur flow (sulfurization). It delivers a continuous and conductive carrier path and lowers the potential barrier at the interface of the WS2 nanocrystallites (top) and electrospun WS2 fiber (bottom), resulting in an improved gas response. We developed 3D hierarchical WS2 fibers embedded with vertically aligned WS2 nanocrystallites to increase the gas adsorption site in comparison with that of 1D WS2 fibers without WS2 flakes. Vertically aligned WS2 nanocrystallites were formed after a two-step annealing treatment. Sensors based on the 3D hierarchical WS2 fibers embedded with WS2 flakes, showed higher response to NO2 gas in comparison to that of pure WS2 fibers without WS2 flakes.

8.
J Nanosci Nanotechnol ; 19(3): 1543-1548, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30469220

ABSTRACT

Here we show 60 mA bidirectional current gating in a two-terminal planar device based on a highly resistive vanadium dioxide (VO2) thin film by harnessing photothermally induced phase transition occurred in VO2 when irradiating the VO2 film with a CO2 laser oscillating at 10.6 µm. The VO2 thin film was grown by a pulsed laser deposition method, and the two-terminal planar device was fabricated using the VO2 film isolated with sub-millimeter dimensions. The bidirectional current gating between 0 and 60 mA was accomplished by irradiating the VO2-based device with repetitive pulses of the CO2 laser. In terms of laser modulation parameters such as the pulse width and repetition rate, their effect on the transient responses of laser-gated currents was also investigated. With a minimum energy per pulse of ~766 mJ, a stable bidirectional current gating of up to 60 mA could be successfully implemented for the repetition rates of 0.5-3.0 Hz in a VO2 device biased at ~5.4 V, showing a switching contrast between off- and on-state currents of ~11089. This maximum onstate current (60 mA) and switching contrast are the highest values among previous gating results attained in VO2 devices with a CO2 laser.

9.
J Nanosci Nanotechnol ; 19(3): 1620-1625, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30469233

ABSTRACT

By incorporating a high-power 976 nm laser diode (LD), we demonstrated laser-regulated current switching in a two-terminal planar device based on a vanadium dioxide (VO2) thin film. The VO2 thin film was grown by pulsed laser deposition method and etched to sub-millimeter dimension for the fabrication of a two-terminal device. The reversible current switching was implemented by controlling the on/off state of the LD, which illuminates the VO2-based device. The transient responses of the device currents were analyzed when the device was excited with laser pulses of various repetition rates of up to 5.0 Hz with a pulse width fixed as 75 ms. A switching contrast between off- and on-state currents was calculated as ~9530, and average rising and falling times were measured as ~31 and ~21 ms, respectively.

10.
J Nanosci Nanotechnol ; 17(4): 2828-832, 2017 Apr.
Article in English | MEDLINE | ID: mdl-29668191

ABSTRACT

The surface characteristics and osteoconductivity were evaluated for the micro/nanoporous surfaces of titanium (Ti) alloys prepared by micro-arc oxidation (MAO) and hydrothermal treatment (HT) of binary Ti-5 wt% A alloys (A = Au, Mn, Nb, and Pd). Surface properties were analyzed using X-ray diffractometry, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The osteoconductivity was evaluated by measuring the total protein, ALPase activity, and osteocalcin production. The surface morphologies of MAO/HT specimens mainly affected on their osteoconductivity. Total proteins on Ti alloys (MAO/HT) were slightly lower than that on commercially pure Ti (MAO/HT) after incubation of MG-63 osteoblast-like cells for 14 days. However, better ALPase activity and osteocalcin production were observed on MAO/HT-treated Ti­5Mn, Ti­5Nb, and Ti­5Pd than that on cp-Ti (MAO/HT) after 14 days. Especially, Ti­5Mn (MAO/HT) showed a significant increase of ALPase activity due to its well grown micro/nano structure. Meanwhile, very small nanorods on Ti­5Au (MAO/HT) affected negatively to ALPase activity and osteocalcin production.

11.
Opt Express ; 24(16): 17720-7, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27505740

ABSTRACT

By incorporating a 965 nm laser diode, the bidirectional current triggering of up to 30 mA was demonstrated in a two-terminal planar device based on serially connected vanadium dioxide (VO2) thin films grown by pulsed laser deposition. The bidirectional current triggering was realized by using the focused beams of laser pulses through the photo-thermally induced phase transition of VO2. The transient responses of laser-triggered currents were also investigated when laser pulses excited the device at a variety of pulse widths and repetition rates of up to 4.0 Hz. A switching contrast between off- and on-state currents was obtained as ~8333, and rising and falling times were measured as ~39 and ~29 ms, respectively, for 50 ms laser pulses.

12.
Nano Lett ; 15(10): 6318-23, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26352780

ABSTRACT

We report that vanadium dioxide films patterned with λ/100000 nanogaps exhibit an anomalous transition behavior at millimeter wavelengths. Most of the hybrid structure's switching actions occur well below the insulator to metal transition temperature, starting from 25 °C, so that the hysteresis curves completely separate themselves from their bare film counterparts. It is found that thermally excited intrinsic carriers are responsible for this behavior by introducing enough loss in the context of the radically modified electromagnetic environment in the vicinity of the nanogaps. This phenomenon newly extends the versatility of insulator to metal transition devices to encompass their semiconductor properties.

13.
Small ; 11(41): 5505-9, 2015 Nov 04.
Article in English | MEDLINE | ID: mdl-26312458

ABSTRACT

Short channel field-effect-transistors with inkjet-printed semiconducting carbon nanotubes are fabricated using a novel strategy to minimize material consumption, confining the inkjet droplet into the active channel area. This fabrication approach is compatible with roll-to-roll processing and enables the formation of high-performance short channel device arrays based on inkjet printing.

14.
Opt Express ; 23(11): 14234-44, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26072790

ABSTRACT

By utilizing a CO2 laser centered at ~10.6 µm as an optical stimulus, we demonstrated bidirectional laser triggering in a two-terminal planar device based on a highly resistive vanadium dioxide (VO2) thin film. The break-over voltage of the VO2-based device was measured as large as ~294.8 V, which resulted from the high resistivity of insulating VO2 grains comprising the thin film and the large electrode separation of the device. The bidirectional current switching of up to 20 mA was achieved by harnessing the dramatic resistance variation of the device photo-thermally induced by the laser illumination. The transient responses of laser-triggered currents were also analyzed when laser pulses excited the device at a variety of pulse widths and repetition rates. In the transient responses, a maximum switching contrast between off- and on-state currents was measured as ~7067 with an off-state current of ~2.83 µA, and rising and falling times were measured as ~30 and ~16 ms, respectively, for 100 ms laser pulses.


Subject(s)
Electricity , Lasers, Gas , Optics and Photonics/instrumentation , Oxides/chemistry , Vanadium Compounds/chemistry
15.
Nano Lett ; 14(6): 3683-7, 2014 Jun 11.
Article in English | MEDLINE | ID: mdl-24849313

ABSTRACT

The materials combination of inkjet-printed single-walled carbon nanotubes (SWCNTs) and zinc tin oxide (ZTO) is very promising for large-area thin-film electronics. We compare the characteristics of conventional complementary inverters and ring oscillators measured in air (with SWCNT p-channel field effect transistors (FETs) and ZTO n-channel FETs) with those of ambipolar inverters and ring oscillators comprised of bilayer SWCNT/ZTO FETs. This is the first such comparison between the performance characteristics of ambipolar and conventional inverters and ring oscillators. The measured signal delay per stage of 140 ns for complementary ring oscillators is the fastest for any ring oscillator circuit with printed semiconductors to date.

16.
Opt Express ; 22(8): 9016-23, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24787790

ABSTRACT

By incorporating a 1550 nm laser diode, bidirectional laser triggering was investigated in a two-terminal planar device based on vanadium dioxide (VO2) thin film grown by sol-gel method. A specific bias voltage range enabling the bidirectional laser triggering was experimentally found from the current-voltage characteristics of the VO2-based device, which was measured in a current-controlled mode. At a bias voltage selected within the range, 10 mA bidirectional triggering was implemented with a maximum amplitude switching ratio of ~68.2, and the transient responses of light-triggered currents were also analyzed.

17.
J Prosthet Dent ; 112(5): 1289-97, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24882597

ABSTRACT

STATEMENT OF PROBLEM: Reduced softness and separation from the denture base are the most significant problems of long-term soft lining materials. PURPOSE: The purpose of this study was to evaluate the durometer Shore A hardness and tensile bond strength of long-term soft denture lining materials and to investigate the correlation between these 2 properties. MATERIAL AND METHODS: A group of 7 soft lining materials, 6 silicone based (Dentusil, GC Reline Soft, GC Reline Ultrasoft, Mucopren Soft, Mucosoft, Sofreliner Tough) and 1 acrylic resin based (Durabase), were evaluated for durometer Shore A hardness and tensile bond strength to heat-polymerized denture base resin (Lucitone 199). A specially designed split mold and loading assembly with a swivel connector were used for the durometer Shore A hardness test and tensile bond strength test to improve accuracy and facilitate measurement. Three specimens of each product were stored in a 37°C water bath, and durometer Shore A hardness tests were carried out after 24 hours and 28 days. A tensile bond strength test was carried out for 10 specimens of each product, which were stored in a 37°C water bath for 24 hours before the test. Repeated-measures ANOVA, the Kruskal-Wallis and Duncan multiple range tests, and the Spearman correlation were used for statistical analyses. RESULTS: The repeated-measures ANOVA found significant durometer Shore A hardness differences for the materials (P<.001) and the interaction effect (aging×materials) (P<.001). GC Reline Ultrasoft showed the lowest mean durometer Shore A hardness (21.30 ±0.29 for 24 hours, 34.73 ±0.47 for 28 days), and GC Reline Soft showed the highest mean durometer Shore A hardness (50.13 ±0.48 for 24 hours, 57.20 ±0.28 for 28 days). The Kruskal-Wallis test found a significant difference in the mean tensile bond strength values (P<.001). GC Reline Ultrasoft (0.82 ±0.32 MPa) and Mucopren Soft (0.96 ±0.46 MPa) had a significantly lower mean tensile bond strength (P<.05). GC Reline Soft had the highest mean tensile bond strength (2.99 ±0.43 MPa) (P<.05), and acrylic resin-based Durabase showed a significantly different tensile bond strength (1.32 ±0.16 MPa), except for Mucopren Soft, among the materials (P<.05). The tensile bond strength and Shore A hardness showed a statistically insignificant moderate positive correlation (r=0.571, P=.180 for Shore A hardness 24 hours versus tensile bond strength; r=0.607, P=.148 for Shore A hardness 28 days versus tensile bond strength). CONCLUSIONS: Within the limitations of this study, significant differences were found in durometer Shore A hardness (with aging time) and tensile bond strength among the materials. Adhesive failure was moderately correlated with durometer Shore A hardness, especially after 28 days, but was not significant.


Subject(s)
Dental Bonding , Dental Materials/chemistry , Denture Liners , Acrylic Resins/chemistry , Adhesiveness , Denture Bases , Hardness , Humans , Materials Testing , Methacrylates/chemistry , Polyvinyls/chemistry , Silicones/chemistry , Siloxanes/chemistry , Stress, Mechanical , Temperature , Tensile Strength , Time Factors , Viscosity , Water/chemistry
18.
iScience ; 27(5): 109795, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38741711

ABSTRACT

Despite the promising outcomes of immune checkpoint inhibitors (ICIs), resistance to ICI presents a new challenge. Therefore, selecting patients for specific ICI applications is crucial for maximizing therapeutic efficacy. Herein, we curated 69 human esophageal squamous cell cancer (ESCC) patients' tumor microenvironment (TME) single-cell transcriptomic datasets to subtype ESCC. Integrative analyses of the cellular network and transcriptional signatures of T cells and myeloid cells define distinct ESCC subtypes characterized by T cell exhaustion, and interleukin (IL) and interferon (IFN) signaling. Furthermore, this approach classifies ESCC patients into ICI responders and non-responders, as validated by whole tumor transcriptomes and liquid biopsy-based single-cell transcriptomes of anti-PD-1 ICI responders and non-responders. Our study stratifies ESCC patients based on TME transcriptional network, providing novel insights into tumor niche remodeling and potentially predicting ICI responses in ESCC patients.

19.
Cell Rep ; 43(6): 114286, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38796854

ABSTRACT

Tumor cell plasticity contributes to intratumoral heterogeneity and therapy resistance. Through cell plasticity, some lung adenocarcinoma (LUAD) cells transform into neuroendocrine (NE) tumor cells. However, the mechanisms of NE cell plasticity remain unclear. CRACD (capping protein inhibiting regulator of actin dynamics), a capping protein inhibitor, is frequently inactivated in cancers. CRACD knockout (KO) is sufficient to de-repress NE-related gene expression in the pulmonary epithelium and LUAD cells. In LUAD mouse models, Cracd KO increases intratumoral heterogeneity with NE gene expression. Single-cell transcriptomic analysis showed that Cracd KO-induced NE cell plasticity is associated with cell de-differentiation and stemness-related pathway activation. The single-cell transcriptomic analysis of LUAD patient tumors recapitulates that the distinct LUAD NE cell cluster expressing NE genes is co-enriched with impaired actin remodeling. This study reveals the crucial role of CRACD in restricting NE cell plasticity that induces cell de-differentiation of LUAD.


Subject(s)
Adenocarcinoma of Lung , Cell Plasticity , Lung Neoplasms , Neuroendocrine Cells , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Neuroendocrine Cells/metabolism , Neuroendocrine Cells/pathology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Humans , Mice , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
20.
J Exp Med ; 221(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38411616

ABSTRACT

Diffuse-type gastric adenocarcinoma (DGAC) is a deadly cancer often diagnosed late and resistant to treatment. While hereditary DGAC is linked to CDH1 mutations, the role of CDH1/E-cadherin inactivation in sporadic DGAC tumorigenesis remains elusive. We discovered CDH1 inactivation in a subset of DGAC patient tumors. Analyzing single-cell transcriptomes in malignant ascites, we identified two DGAC subtypes: DGAC1 (CDH1 loss) and DGAC2 (lacking immune response). DGAC1 displayed distinct molecular signatures, activated DGAC-related pathways, and an abundance of exhausted T cells in ascites. Genetically engineered murine gastric organoids showed that Cdh1 knock-out (KO), KrasG12D, Trp53 KO (EKP) accelerates tumorigenesis with immune evasion compared with KrasG12D, Trp53 KO (KP). We also identified EZH2 as a key mediator promoting CDH1 loss-associated DGAC tumorigenesis. These findings highlight DGAC's molecular diversity and potential for personalized treatment in CDH1-inactivated patients.


Subject(s)
Ascites , Carcinogenesis , Humans , Animals , Mice , Carcinogenesis/genetics , Cell Transformation, Neoplastic , Stomach , Cadherins/genetics , Enhancer of Zeste Homolog 2 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL