Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Immunol ; 14(6): 619-32, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644507

ABSTRACT

The differentiation of αßT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly gradual changes. In contrast, transit through the CD4(+)CD8(+) stage involved a global shutdown of housekeeping genes that is rare among cells of the immune system and correlated tightly with expression of the transcription factor c-Myc. Selection driven by major histocompatibility complex (MHC) molecules promoted a large-scale transcriptional reactivation. We identified distinct signatures that marked cells destined for positive selection versus apoptotic deletion. Differences in the expression of unexpectedly few genes accompanied commitment to the CD4(+) or CD8(+) lineage, a similarity that carried through to peripheral T cells and their activation, demonstrated by mass cytometry phosphoproteomics. The transcripts newly identified as encoding candidate mediators of key transitions help define the 'known unknowns' of thymocyte differentiation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Receptors, Antigen, T-Cell, alpha-beta/immunology , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Lineage/immunology , Cell Proliferation , Cells, Cultured , Cluster Analysis , Flow Cytometry , Histocompatibility Antigens/genetics , Histocompatibility Antigens/immunology , Histocompatibility Antigens/metabolism , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Phosphorylation/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymocytes/metabolism , Transcriptome/genetics , Transcriptome/immunology
2.
Nat Immunol ; 14(6): 633-43, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23624555

ABSTRACT

The differentiation of hematopoietic stem cells into cells of the immune system has been studied extensively in mammals, but the transcriptional circuitry that controls it is still only partially understood. Here, the Immunological Genome Project gene-expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. To analyze this data set we developed Ontogenet, an algorithm for reconstructing lineage-specific regulation from gene-expression profiles across lineages. Using Ontogenet, we found differentiation stage-specific regulators of mouse hematopoiesis and identified many known hematopoietic regulators and 175 previously unknown candidate regulators, as well as their target genes and the cell types in which they act. Among the previously unknown regulators, we emphasize the role of ETV5 in the differentiation of γδ T cells. As the transcriptional programs of human and mouse cells are highly conserved, it is likely that many lessons learned from the mouse model apply to humans.


Subject(s)
Algorithms , Gene Expression Regulation/immunology , Immune System/metabolism , Transcription, Genetic/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Gene Expression Profiling , Gene Regulatory Networks/immunology , Humans , Immune System/cytology , Mice , Oligonucleotide Array Sequence Analysis , Receptors, Antigen, T-Cell, gamma-delta/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Repressor Proteins/genetics , Repressor Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Trans-Activators/genetics , Trans-Activators/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Transcriptome/genetics , Transcriptome/immunology
3.
PLoS Pathog ; 8(11): e1003000, 2012.
Article in English | MEDLINE | ID: mdl-23166490

ABSTRACT

Idiopathic chronic diarrhea (ICD) is a leading cause of morbidity amongst rhesus monkeys kept in captivity. Here, we show that exposure of affected animals to the whipworm Trichuris trichiura led to clinical improvement in fecal consistency, accompanied by weight gain, in four out of the five treated monkeys. By flow cytometry analysis of pinch biopsies collected during colonoscopies before and after treatment, we found an induction of a mucosal T(H)2 response following helminth treatment that was associated with a decrease in activated CD4(+) Ki67+ cells. In parallel, expression profiling with oligonucleotide microarrays and real-time PCR analysis revealed reductions in T(H)1-type inflammatory gene expression and increased expression of genes associated with IgE signaling, mast cell activation, eosinophil recruitment, alternative activation of macrophages, and worm expulsion. By quantifying bacterial 16S rRNA in pinch biopsies using real-time PCR analysis, we found reduced bacterial attachment to the intestinal mucosa post-treatment. Finally, deep sequencing of bacterial 16S rRNA revealed changes to the composition of microbial communities attached to the intestinal mucosa following helminth treatment. Thus, the genus Streptophyta of the phylum Cyanobacteria was vastly increased in abundance in three out of five ICD monkeys relative to healthy controls, but was reduced to control levels post-treatment; by contrast, the phylum Tenericutes was expanded post-treatment. These findings suggest that helminth treatment in primates can ameliorate colitis by restoring mucosal barrier functions and reducing overall bacterial attachment, and also by altering the communities of attached bacteria. These results also define ICD in monkeys as a tractable preclinical model for ulcerative colitis in which these effects can be further investigated.


Subject(s)
Colon/immunology , Diarrhea/immunology , Diarrhea/therapy , Diarrhea/veterinary , Intestinal Mucosa/immunology , Monkey Diseases/immunology , Monkey Diseases/therapy , Therapy with Helminths , Trichuris , Animals , Chronic Disease , Colon/microbiology , Cyanobacteria/immunology , Diarrhea/microbiology , Female , Inflammation/immunology , Inflammation/microbiology , Inflammation/therapy , Intestinal Mucosa/microbiology , Macaca mulatta , Male , Monkey Diseases/microbiology , Th1 Cells/immunology , Th2 Cells/immunology
4.
Blood Adv ; 3(12): 1837-1847, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31208955

ABSTRACT

Patients with myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) are generally older and have more comorbidities. Therefore, identifying personalized treatment options for each patient early and accurately is essential. To address this, we developed a computational biology modeling (CBM) and digital drug simulation platform that relies on somatic gene mutations and gene CNVs found in malignant cells of individual patients. Drug treatment simulations based on unique patient-specific disease networks were used to generate treatment predictions. To evaluate the accuracy of the genomics-informed computational platform, we conducted a pilot prospective clinical study (NCT02435550) enrolling confirmed MDS and AML patients. Blinded to the empirically prescribed treatment regimen for each patient, genomic data from 50 evaluable patients were analyzed by CBM to predict patient-specific treatment responses. CBM accurately predicted treatment responses in 55 of 61 (90%) simulations, with 33 of 61 true positives, 22 of 61 true negatives, 3 of 61 false positives, and 3 of 61 false negatives, resulting in a sensitivity of 94%, a specificity of 88%, and an accuracy of 90%. Laboratory validation further confirmed the accuracy of CBM-predicted activated protein networks in 17 of 19 (89%) samples from 11 patients. Somatic mutations in the TET2, IDH1/2, ASXL1, and EZH2 genes were discovered to be highly informative of MDS response to hypomethylating agents. In sum, analyses of patient cancer genomics using the CBM platform can be used to predict precision treatment responses in MDS and AML patients.


Subject(s)
Computational Biology/methods , Genomics/instrumentation , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Adult , Aged , Aged, 80 and over , Computational Biology/statistics & numerical data , DNA Copy Number Variations/genetics , DNA Methylation/drug effects , DNA-Binding Proteins/genetics , Dioxygenases , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Humans , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Mutation , Myelodysplastic Syndromes/therapy , Non-Randomized Controlled Trials as Topic , Precision Medicine/instrumentation , Predictive Value of Tests , Prospective Studies , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Sensitivity and Specificity , Transcription Factors/genetics , Treatment Outcome
5.
Sci Transl Med ; 6(251): 251ra117, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25163477

ABSTRACT

Although clinical immunity to malaria eventually develops among children living in endemic settings, the underlying immunologic mechanisms are not known. The Vδ2(+) subset of γδ T cells have intrinsic reactivity to malaria antigens, can mediate killing of Plasmodium falciparum merozoites, and expand markedly in vivo after malaria infection in previously naïve hosts, but their role in mediating immunity in children repeatedly exposed to malaria is unclear. We evaluated γδ T cell responses to malaria among 4-year-old children enrolled in a longitudinal study in Uganda. We found that repeated malaria was associated with reduced percentages of Vδ2(+) γδ T cells in peripheral blood, decreased proliferation and cytokine production in response to malaria antigens, and increased expression of immunoregulatory genes. Further, loss and dysfunction of proinflammatory Vδ2(+) γδ T cells were associated with a reduced likelihood of symptoms upon subsequent P. falciparum infection. Together, these results suggest that repeated malaria infection during childhood results in progressive loss and dysfunction of Vδ2(+) γδ T cells that may facilitate immunological tolerance of the parasite.


Subject(s)
Immune Tolerance/immunology , Malaria, Falciparum/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Child , Child, Preschool , Cohort Studies , Gene Expression Profiling , Humans , Immunity , Immunomodulation , Incidence , Infant , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Parasitemia/immunology , Plasmodium falciparum/immunology , T-Lymphocytes/immunology , Treatment Outcome , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL