Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38494886

ABSTRACT

A network of left frontal and temporal brain regions supports language processing. This "core" language network stores our knowledge of words and constructions as well as constraints on how those combine to form sentences. However, our linguistic knowledge additionally includes information about phonemes and how they combine to form phonemic clusters, syllables, and words. Are phoneme combinatorics also represented in these language regions? Across five functional magnetic resonance imaging experiments, we investigated the sensitivity of high-level language processing brain regions to sublexical linguistic regularities by examining responses to diverse nonwords-sequences of phonemes that do not constitute real words (e.g. punes, silory, flope). We establish robust responses in the language network to visually (experiment 1a, n = 605) and auditorily (experiments 1b, n = 12, and 1c, n = 13) presented nonwords. In experiment 2 (n = 16), we find stronger responses to nonwords that are more well-formed, i.e. obey the phoneme-combinatorial constraints of English. Finally, in experiment 3 (n = 14), we provide suggestive evidence that the responses in experiments 1 and 2 are not due to the activation of real words that share some phonology with the nonwords. The results suggest that sublexical regularities are stored and processed within the same fronto-temporal network that supports lexical and syntactic processes.


Subject(s)
Brain Mapping , Language , Brain Mapping/methods , India , Brain/diagnostic imaging , Brain/physiology , Linguistics , Magnetic Resonance Imaging
2.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948870

ABSTRACT

Human language comprehension is remarkably robust to ill-formed inputs (e.g., word transpositions). This robustness has led some to argue that syntactic parsing is largely an illusion, and that incremental comprehension is more heuristic, shallow, and semantics-based than is often assumed. However, the available data are also consistent with the possibility that humans always perform rule-like symbolic parsing and simply deploy error correction mechanisms to reconstruct ill-formed inputs when needed. We put these hypotheses to a new stringent test by examining brain responses to a) stimuli that should pose a challenge for syntactic reconstruction but allow for complex meanings to be built within local contexts through associative/shallow processing (sentences presented in a backward word order), and b) grammatically well-formed but semantically implausible sentences that should impede semantics-based heuristic processing. Using a novel behavioral syntactic reconstruction paradigm, we demonstrate that backward-presented sentences indeed impede the recovery of grammatical structure during incremental comprehension. Critically, these backward-presented stimuli elicit a relatively low response in the language areas, as measured with fMRI. In contrast, semantically implausible but grammatically well-formed sentences elicit a response in the language areas similar in magnitude to naturalistic (plausible) sentences. In other words, the ability to build syntactic structures during incremental language processing is both necessary and sufficient to fully engage the language network. Taken together, these results provide strongest to date support for a generalized reliance of human language comprehension on syntactic parsing.

SELECTION OF CITATIONS
SEARCH DETAIL