Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Proc Natl Acad Sci U S A ; 121(26): e2319322121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38900789

ABSTRACT

Thymocyte selection-associated high-mobility group box (TOX) is a transcription factor that is crucial for T cell exhaustion during chronic antigenic stimulation, but its role in inflammation is poorly understood. Here, we report that TOX extracellularly mediates drastic inflammation upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by binding to the cell surface receptor for advanced glycation end-products (RAGE). In various diseases, including COVID-19, TOX release was highly detectable in association with disease severity, contributing to lung fibroproliferative acute respiratory distress syndrome (ARDS). Recombinant TOX-induced blood vessel rupture, similar to a clinical signature in patients experiencing a cytokine storm, further exacerbating respiratory function impairment. In contrast, disruption of TOX function by a neutralizing antibody and genetic removal of RAGE diminished TOX-mediated deleterious effects. Altogether, our results suggest an insight into TOX function as an inflammatory mediator and propose the TOX-RAGE axis as a potential target for treating severe patients with pulmonary infection and mitigating lung fibroproliferative ARDS.


Subject(s)
COVID-19 , Receptor for Advanced Glycation End Products , SARS-CoV-2 , Humans , Receptor for Advanced Glycation End Products/metabolism , COVID-19/immunology , COVID-19/metabolism , COVID-19/pathology , COVID-19/complications , COVID-19/virology , Animals , Mice , Inflammation/metabolism , Inflammation/pathology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Lung Injury/immunology , Lung Injury/metabolism , Lung Injury/pathology , High Mobility Group Proteins/metabolism , High Mobility Group Proteins/genetics , Male , Lung/pathology , Lung/metabolism , Lung/immunology , Female
2.
Proc Natl Acad Sci U S A ; 114(28): E5750-E5759, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28655842

ABSTRACT

Cell polarization and directional cell migration can display random, persistent, and oscillatory dynamic patterns. However, it is not clear whether these polarity patterns can be explained by the same underlying regulatory mechanism. Here, we show that random, persistent, and oscillatory migration accompanied by polarization can simultaneously occur in populations of melanoma cells derived from tumors with different degrees of aggressiveness. We demonstrate that all of these patterns and the probabilities of their occurrence are quantitatively accounted for by a simple mechanism involving a spatially distributed, mechanochemical feedback coupling the dynamically changing extracellular matrix (ECM)-cell contacts to the activation of signaling downstream of the Rho-family small GTPases. This mechanism is supported by a predictive mathematical model and extensive experimental validation, and can explain previously reported results for diverse cell types. In melanoma, this mechanism also accounts for the effects of genetic and environmental perturbations, including mutations linked to invasive cell spread. The resulting mechanistic understanding of cell polarity quantitatively captures the relationship between population variability and phenotypic plasticity, with the potential to account for a wide variety of cell migration states in diverse pathological and physiological conditions.


Subject(s)
Cell Polarity/physiology , Feedback, Physiological , Melanoma/metabolism , Skin Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Shape , Disease Progression , Extracellular Matrix/metabolism , Gene Expression Regulation, Neoplastic , Humans , Melanoma/pathology , Models, Theoretical , Mutation , Neoplasm Invasiveness , Oscillometry , Phenotype , Signal Transduction , Skin Neoplasms/pathology , rho GTP-Binding Proteins/metabolism
3.
Nat Mater ; 15(7): 792-801, 2016 07.
Article in English | MEDLINE | ID: mdl-26974411

ABSTRACT

Living cells and the extracellular matrix (ECM) can exhibit complex interactions that define key developmental, physiological and pathological processes. Here, we report a new type of directed migration-which we term 'topotaxis'-guided by the gradient of the nanoscale topographic features in the cells' ECM environment. We show that the direction of topotaxis is reflective of the effective cell stiffness, and that it depends on the balance of the ECM-triggered signalling pathways PI(3)K-Akt and ROCK-MLCK. In melanoma cancer cells, this balance can be altered by different ECM inputs, pharmacological perturbations or genetic alterations, particularly a loss of PTEN in aggressive melanoma cells. We conclude that topotaxis is a product of the material properties of cells and the surrounding ECM, and propose that the invasive capacity of many cancers may depend broadly on topotactic responses, providing a potentially attractive mechanism for controlling invasive and metastatic behaviour.


Subject(s)
Cell Movement , Gene Expression Regulation, Neoplastic/physiology , Melanoma , Taxis Response/physiology , Cell Line, Tumor , Humans , Melanoma/pathology , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Surface Properties , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
4.
Small ; 12(28): 3764-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27273859

ABSTRACT

The unidirectional clustering induced by capillary force of drying liquids between pillars is investigated and a theoretical model to set a criterion of the unidirectional clustering of the slanted nanopillars is proposed.

6.
Adv Healthc Mater ; 13(7): e2303161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38010253

ABSTRACT

Patient-derived microphysiological systems (P-MPS) have emerged as powerful tools in precision medicine that provide valuable insight into individual patient characteristics. This review discusses the development of P-MPS as an integration of patient-derived samples, including patient-derived cells, organoids, and induced pluripotent stem cells, into well-defined MPSs. Emphasizing the necessity of P-MPS development, its significance as a nonclinical assessment approach that bridges the gap between traditional in vitro models and clinical outcomes is highlighted. Additionally, guidance is provided for engineering approaches to develop microfluidic devices and high-content analysis for P-MPSs, enabling high biological relevance and high-throughput experimentation. The practical implications of the P-MPS are further examined by exploring the clinically relevant outcomes obtained from various types of patient-derived samples. The construction and analysis of these diverse samples within the P-MPS have resulted in physiologically relevant data, paving the way for the development of personalized treatment strategies. This study describes the significance of the P-MPS in precision medicine, as well as its unique capacity to offer valuable insights into individual patient characteristics.


Subject(s)
Induced Pluripotent Stem Cells , Microphysiological Systems , Humans , Precision Medicine , Lab-On-A-Chip Devices , Organoids , Induced Pluripotent Stem Cells/physiology
7.
Adv Healthc Mater ; : e2400475, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815251

ABSTRACT

Cancer immunotherapy is used to treat tumors by modulating the immune system. Although the anticancer efficacy of cancer immunotherapy has been evaluated prior to clinical trials, conventional in vivo animal and endpoint models inadequately replicate the intricate process of tumor elimination and reflect human-specific immune systems. Therefore, more sophisticated models that mimic the complex tumor-immune microenvironment must be employed to assess the effectiveness of immunotherapy. Additionally, using real-time imaging technology, a step-by-step evaluation can be applied, allowing for a more precise assessment of treatment efficacy. Here, an overview of the various imaging-based evaluation platforms recently developed for cancer immunotherapeutic applications is presented. Specifically, a fundamental technique is discussed for stably observing immune cell-based tumor cell killing using direct imaging, a microwell that reproduces a confined space for spatial observation, a droplet assay that facilitates cell-cell interactions, and a 3D microphysiological system that reconstructs the vascular environment. Furthermore, it is suggested that future evaluation platforms pursue more human-like immune systems.

8.
Lab Chip ; 24(6): 1542-1556, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38192269

ABSTRACT

Cancer metastasis, the leading cause of cancer-related deaths, remains a complex challenge in medical science. Stephen Paget's "seed and soil theory" introduced the concept of organotropism, suggesting that metastatic success depends on specific organ microenvironments. Understanding organotropism not only offers potential for curbing metastasis but also novel treatment strategies. Microphysiological systems (MPS), especially organ-on-a-chip models, have emerged as transformative tools in this quest. These systems, blending microfluidics, biology, and engineering, grant precise control over cell interactions within organ-specific microenvironments. MPS enable real-time monitoring, morphological analysis, and protein quantification, enhancing our comprehension of cancer dynamics, including tumor migration, vascularization, and pre-metastatic niches. In this review, we explore innovative applications of MPS in investigating cancer metastasis, particularly focusing on organotropism. This interdisciplinary approach converges the field of science, engineering, and medicine, thereby illuminating a path toward groundbreaking discoveries in cancer research.


Subject(s)
Microphysiological Systems , Neoplasms , Humans , Microfluidics , Cell Communication , Neoplasm Metastasis , Tumor Microenvironment
9.
Nat Mater ; 11(9): 795-801, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22842511

ABSTRACT

Flexible skin-attachable strain-gauge sensors are an essential component in the development of artificial systems that can mimic the complex characteristics of the human skin. In general, such sensors contain a number of circuits or complex layered matrix arrays. Here, we present a simple architecture for a flexible and highly sensitive strain sensor that enables the detection of pressure, shear and torsion. The device is based on two interlocked arrays of high-aspect-ratio Pt-coated polymeric nanofibres that are supported on thin polydimethylsiloxane layers. When different sensing stimuli are applied, the degree of interconnection and the electrical resistance of the sensor changes in a reversible, directional manner with specific, discernible strain-gauge factors. The sensor response is highly repeatable and reproducible up to 10,000 cycles with excellent on/off switching behaviour. We show that the sensor can be used to monitor signals ranging from human heartbeats to the impact of a bouncing water droplet on a superhydrophobic surface.

10.
Encephalitis ; 3(3): 97-101, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37500102

ABSTRACT

In this report, we present a rare case of anti-Ma2-associated encephalitis concurrent with coronavirus disease 2019 (COVID-19) following breast cancer surgery. The patient exhibited minimal clinical symptoms of COVID-19 infection but developed seizures and altered mental status after surgery, leading to diagnosis of a classic paraneoplastic syndrome. This case highlights the possibility of paraneoplastic neurological syndrome even after cancer surgery and the need for careful consideration of post-acute infection syndromes when neurological symptoms occur following an infection.

11.
Mol Brain ; 16(1): 13, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36670465

ABSTRACT

The central nervous system is organized into different neural circuits, each with particular functions and properties. Studying neural circuits is essential to understanding brain function and neuronal diseases. Microfluidic systems are widely used for reconstructing and studying neural circuits but still need improvement to allow modulation and monitoring of the physiological properties of circuits. In this study, we constructed an improved microfluidic device that supports the electrical modulation of neural circuits and proper reassembly. We demonstrated that our microfluidic device provides a platform for electrically modulating and monitoring the physiological function of neural circuits with genetic indicators for synaptic functionality in corticostriatal (CStr) circuits. In particular, our microfluidic device measures activity-driven Ca2+ dynamics using Ca2+ indicators (synaptophysin-GCaMP6f and Fluo5F-AM), as well as activity-driven synaptic transmission and retrieval using vGlut-pHluorin. Overall, our findings indicate that the improved microfluidic platform described here is an invaluable tool for studying the physiological properties of specific neural circuits.


Subject(s)
Neurons , Synaptic Transmission , Neurons/physiology , Lab-On-A-Chip Devices
12.
Bioact Mater ; 21: 576-594, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36204281

ABSTRACT

Viral infections cause damage to various organ systems by inducing organ-specific symptoms or systemic multi-organ damage. Depending on the infection route and virus type, infectious diseases are classified as respiratory, nervous, immune, digestive, or skin infections. Since these infectious diseases can widely spread in the community and their catastrophic effects are severe, identification of their causative agent and mechanisms underlying their pathogenesis is an urgent necessity. Although infection-associated mechanisms have been studied in two-dimensional (2D) cell culture models and animal models, they have shown limitations in organ-specific or human-associated pathogenesis, and the development of a human-organ-mimetic system is required. Recently, three-dimensional (3D) engineered tissue models, which can present human organ-like physiology in terms of the 3D structure, utilization of human-originated cells, recapitulation of physiological stimuli, and tight cell-cell interactions, were developed. Furthermore, recent studies have shown that these models can recapitulate infection-associated pathologies. In this review, we summarized the recent advances in 3D engineered tissue models that mimic organ-specific viral infections. First, we briefly described the limitations of the current 2D and animal models in recapitulating human-specific viral infection pathology. Next, we provided an overview of recently reported viral infection models, focusing particularly on organ-specific infection pathologies. Finally, a future perspective that must be pursued to reconstitute more human-specific infectious diseases is presented.

13.
Adv Sci (Weinh) ; 10(13): e2206384, 2023 05.
Article in English | MEDLINE | ID: mdl-36808839

ABSTRACT

In infectious disease such as sepsis and COVID-19, blood vessel leakage treatment is critical to prevent fatal progression into multi-organ failure and ultimately death, but the existing effective therapeutic modalities that improve vascular barrier function are limited. Here, this study reports that osmolarity modulation can significantly improve vascular barrier function, even in an inflammatory condition. 3D human vascular microphysiological systems and automated permeability quantification processes for high-throughput analysis of vascular barrier function are utilized. Vascular barrier function is enhanced by >7-folds with 24-48 h hyperosmotic exposure (time window of emergency care; >500 mOsm L-1 ) but is disrupted after hypo-osmotic exposure (<200 mOsm L-1 ). By integrating genetic and protein level analysis, it is shown that hyperosmolarity upregulates vascular endothelial-cadherin, cortical F-actin, and cell-cell junction tension, indicating that hyperosmotic adaptation mechanically stabilizes the vascular barrier. Importantly, improved vascular barrier function following hyperosmotic exposure is maintained even after chronic exposure to proinflammatory cytokines and iso-osmotic recovery via Yes-associated protein signaling pathways. This study suggests that osmolarity modulation may be a unique therapeutic strategy to proactively prevent infectious disease progression into severe stages via vascular barrier function protection.


Subject(s)
COVID-19 , Microphysiological Systems , Humans , Osmolar Concentration , Signal Transduction , Cytokines
14.
Sci Adv ; 9(10): eadf0925, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36897938

ABSTRACT

Anisotropically organized neural networks are indispensable routes for functional connectivity in the brain, which remains largely unknown. While prevailing animal models require additional preparation and stimulation-applying devices and have exhibited limited capabilities regarding localized stimulation, no in vitro platform exists that permits spatiotemporal control of chemo-stimulation in anisotropic three-dimensional (3D) neural networks. We present the integration of microchannels seamlessly into a fibril-aligned 3D scaffold by adapting a single fabrication principle. We investigated the underlying physics of elastic microchannels' ridges and interfacial sol-gel transition of collagen under compression to determine a critical window of geometry and strain. We demonstrated the spatiotemporally resolved neuromodulation in an aligned 3D neural network by local deliveries of KCl and Ca2+ signal inhibitors, such as tetrodotoxin, nifedipine, and mibefradil, and also visualized Ca2+ signal propagation with a speed of ~3.7 µm/s. We anticipate that our technology will pave the way to elucidate functional connectivity and neurological diseases associated with transsynaptic propagation.


Subject(s)
Brain , Collagen , Animals , Brain/physiology
15.
Adv Mater ; 35(35): e2302996, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37377148

ABSTRACT

An in vitro model, composed of the short-wavelength human opsins and rhodopsins, is created. Two types of photosensitive neural spheroids are transfected for selective reaction under bluish-purple and green lights. These are employed to two devices with intact neuron and neural-spheroid to study the interaction. By photostimulation, the photosensitive spheroid initiated photoactivation, and the signal generated from its body is transmitted to adjacent neural networks. Specifically, the signal traveled through the axon bundle in narrow gap from photosensitive spheroid to intact spheroid as an eye-to-brain model including optic nerve. The whole process with photosensitive spheroid is monitored by calcium ion detecting fluorescence images. The results of this study can be applied to examine vision restoration and novel photosensitive biological systems with spectral sensitivity.


Subject(s)
Opsins , Vision, Ocular , Humans , Opsins/metabolism , Neurons/metabolism , Spheroids, Cellular/metabolism
16.
Proc Natl Acad Sci U S A ; 106(14): 5639-44, 2009 Apr 07.
Article in English | MEDLINE | ID: mdl-19304801

ABSTRACT

We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

17.
Adv Sci (Weinh) ; 9(34): e2201882, 2022 12.
Article in English | MEDLINE | ID: mdl-36073820

ABSTRACT

Diabetes mellitus (DM) is closely related to Alzheimer's disease (AD), but individual cellular changes and the possibilities of recovery through molecular level regulation have not been investigated. Here, a neurovasculature-on-a-chip (NV chip) model is presented in which the perfusable brain microvasculature is surrounded by the neurons. Under hyperglycemic conditions, the brain microvasculature shows disruption of barrier function and reduced expression of junctional markers. The neurons show Tau pathology and amyloid-beta (Aß) accumulation. Endothelial cells and neurons in the NV chip show sirtuin 1 (SIRT1) downregulation under hyperglycemic conditions, suggesting SIRT1 as a key regulator of hyperglycemia-induced AD. The recovery of glucose levels rescue SIRT1 expression, suggesting that this type of intervention may rescue the progression of hyperglycemia-mediated AD. Furthermore, the short hairpin RNA (shRNA)-, clustered regularly interspaced short palindromic repeats (CRISPR)-, and pharmaceutics-mediated regulation of SIRT1 regulate the pathophysiology of the brain endothelium and neurons at the functional and molecular levels.


Subject(s)
Alzheimer Disease , Diabetes Mellitus , Humans , Sirtuin 1 , Endothelial Cells , Biopharmaceutics
18.
Biomicrofluidics ; 16(6): 061301, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36438549

ABSTRACT

Neurodegenerative diseases and neurodevelopmental disorders have become increasingly prevalent; however, the development of new pharmaceuticals to treat these diseases has lagged. Animal models have been extensively utilized to identify underlying mechanisms and to validate drug efficacies, but they possess inherent limitations including genetic heterogeneity with humans. To overcome these limitations, human cell-based in vitro brain models including brain-on-a-chip and brain organoids have been developed. Each technique has distinct advantages and disadvantages in terms of the mimicry of structure and microenvironment, but each technique could not fully mimic the structure and functional aspects of the brain tissue. Recently, a brain organoid-on-a-chip (BOoC) platform has emerged, which merges brain-on-a-chip and brain organoids. BOoC can potentially reflect the detailed structure of the brain tissue, vascular structure, and circulation of fluid. Hence, we summarize recent advances in BOoC as a human brain avatar and discuss future perspectives. BOoC platform can pave the way for mechanistic studies and the development of pharmaceuticals to treat brain diseases in future.

19.
IEEE Trans Nanobioscience ; 21(3): 395-404, 2022 07.
Article in English | MEDLINE | ID: mdl-34941516

ABSTRACT

An increasing number of patients are suffering from central nervous system (CNS) injury, including spinal cord injury. However, no suitable treatment is available for such patients as yet. Various platforms have been utilized to recapitulate CNS injuries. However, animal models and in vitro two-dimensional (2D)-based cell culture platforms have limitations, such as genetic heterogeneity and loss of the neural-circuit ultrastructure. To overcome these limitations, we developed a method for performing axotomy on an open-access three-dimensional (3D) neuron-culture platform. In this platform, the 3D alignment of axons in the brain tissue was recapitulated. For direct access to the cultured axons, the bottom of the 3D neuron-culture device was disassembled, enabling exposure of the neuron-laden Matrigel to the outside. The mechanical damage to the axons was recapitulated by puncturing the neuron-laden Matrigel using a pin. Thus, precise axotomy of three-dimensionally aligned axons could be performed. Furthermore, it was possible to fill the punctuated area by re-injecting Matrigel. Consequently, neurites regenerated into re-injected Matrigel. Moreover, it was confirmed that astrocytes can be co-cultured on this open-access platform without interfering with the axon alignment. The proposed open-access platform is expected to be useful for developing treatment techniques for CNS injuries.


Subject(s)
Axons , Microfluidics , Animals , Axons/physiology , Axotomy , Coculture Techniques , Neurons/physiology
20.
Bioact Mater ; 13: 135-148, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35224297

ABSTRACT

In the last few decades, adverse reactions to pharmaceuticals have been evaluated using 2D in vitro models and animal models. However, with increasing computational power, and as the key drivers of cellular behavior have been identified, in silico models have emerged. These models are time-efficient and cost-effective, but the prediction of adverse reactions to unknown drugs using these models requires relevant experimental input. Accordingly, the physiome concept has emerged to bridge experimental datasets with in silico models. The brain physiome describes the systemic interactions of its components, which are organized into a multilevel hierarchy. Because of the limitations in obtaining experimental data corresponding to each physiome component from 2D in vitro models and animal models, 3D in vitro brain models, including brain organoids and brain-on-a-chip, have been developed. In this review, we present the concept of the brain physiome and its hierarchical organization, including cell- and tissue-level organizations. We also summarize recently developed 3D in vitro brain models and link them with the elements of the brain physiome as a guideline for dataset collection. The connection between in vitro 3D brain models and in silico modeling will lead to the establishment of cost-effective and time-efficient in silico models for the prediction of the safety of unknown drugs.

SELECTION OF CITATIONS
SEARCH DETAIL