Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 381
Filter
Add more filters

Publication year range
1.
Nucleic Acids Res ; 51(10): 4899-4913, 2023 06 09.
Article in English | MEDLINE | ID: mdl-36999590

ABSTRACT

Because DNA double-strand breaks (DSBs) greatly threaten genomic integrity, effective DNA damage sensing and repair are essential for cellular survival in all organisms. However, DSB repair mainly occurs during interphase and is repressed during mitosis. Here, we show that, unlike mitotic cells, oocytes can repair DSBs during meiosis I through microtubule-dependent chromosomal recruitment of the CIP2A-MDC1-TOPBP1 complex from spindle poles. After DSB induction, we observed spindle shrinkage and stabilization, as well as BRCA1 and 53BP1 recruitment to chromosomes and subsequent DSB repair during meiosis I. Moreover, p-MDC1 and p-TOPBP1 were recruited from spindle poles to chromosomes in a CIP2A-dependent manner. This pole-to-chromosome relocation of the CIP2A-MDC1-TOPBP1 complex was impaired not only by depolymerizing microtubules but also by depleting CENP-A or HEC1, indicating that the kinetochore/centromere serves as a structural hub for microtubule-dependent transport of the CIP2A-MDC1-TOPBP1 complex. Mechanistically, DSB-induced CIP2A-MDC1-TOPBP1 relocation is regulated by PLK1 but not by ATM activity. Our data provide new insights into the critical crosstalk between chromosomes and spindle microtubules in response to DNA damage to maintain genomic stability during oocyte meiosis.


Subject(s)
Chromosomes , DNA Repair , Microtubules , Oocytes , Centromere , DNA Damage , Meiosis , Spindle Apparatus/genetics , Spindle Poles , Animals , Mice , Multiprotein Complexes , Chromosomes/metabolism
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 22-28, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38650160

ABSTRACT

This study aimed to evaluate the physiological role of NAMPT associated with MDPC-23 odontoblast cell proliferation. Cell viability was measured using the (DAPI) staining, caspase activation analysis and immunoblotting were performed. Visfatin promoted MDPC-23 odontoblast cell growth in a dose-dependent manner. Furthermore, the up-regulation of Visfatin promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers in MDPC-23 cells. However, FK-866 cell growth in a dose-dependent manner induced nuclear condensation and fragmentation. FK-866-treated cells showed H&E staining and increased apoptosis compared to control cells. The expression of anti-apoptotic factors components of the mitochondria-dependent intrinsic apoptotic pathway significantly decreased following FK-866 treatment. The expression of pro-apoptotic increased upon FK-866 treatment. In addition, FK-866 activated caspase-3 and PARP to induce cell death. In addition, after treating FK-866 for 72 h, the 3/7 activity of MDPC-23 cells increased in a concentration-dependent manner, and the IHC results also confirmed that Caspase-3 increased in a concentration-dependent. Therefore, the presence or absence of NAMPT expression in dentin cells was closely related to cell proliferation and formation of extracellular substrates.


Subject(s)
Apoptosis , Cell Proliferation , Nicotinamide Phosphoribosyltransferase , Odontoblasts , Nicotinamide Phosphoribosyltransferase/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Odontoblasts/drug effects , Odontoblasts/cytology , Odontoblasts/metabolism , Animals , Mice , Cell Line , Cytokines/metabolism , Caspase 3/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , Acrylamides/pharmacology , Odontogenesis/drug effects
3.
Biol Pharm Bull ; 47(2): 539-546, 2024.
Article in English | MEDLINE | ID: mdl-38417906

ABSTRACT

Metformin is an anti-diabetic drug that exerts protective effects against neurodegenerative diseases. In this study, we investigated the protective effects of metformin against manganese (Mn)-induced cytotoxicity associated with Parkinson's disease-like symptoms in N27-A dopaminergic (DA) cells. Metformin (0.1-1 mM) suppressed Mn (0.4 mM)-induced cell death in a concentration-dependent manner. Metformin pretreatment effectively suppressed the Mn-mediated increase in the levels of oxidative stress markers, such as reactive oxygen species (ROS) and thiobarbituric acid reactive substances. Moreover, metformin restored the levels of the antioxidants, superoxide dismutase, intracellular glutathione, and glutathione peroxidase, which were reduced by Mn. Metformin (0.5 mM) significantly attenuated the decrease in sirtuin-1 (SIRT1) and peroxisome proliferator activated receptor gamma coactivator-1 alpha levels, which were increased by Mn (0.4 mM). In addition, metformin inhibited the expression of microRNA-34a, which directly targeted SIRT1. Metformin also inhibited the loss of Mn-induced mitochondrial membrane potential (ΔΨm) and activation of the apoptosis marker, caspase-3. Furthermore, metformin-mediated inhibition of ROS generation and caspase-3 activation, recovery of ΔΨm, and restoration of cell viability were partially reversed by the SIRT1 inhibitor, Ex527. These results suggest that metformin may protects against Mn-induced DA neuronal cell death mediated by oxidative stress and mitochondrial dysfunction possibly via the regulation of SIRT1 pathway.


Subject(s)
Manganese , Metformin , Manganese/toxicity , Manganese/metabolism , Reactive Oxygen Species/metabolism , Caspase 3/metabolism , Metformin/pharmacology , Sirtuin 1/metabolism , Apoptosis , Oxidative Stress , Dopaminergic Neurons
4.
Article in English | MEDLINE | ID: mdl-38958762

ABSTRACT

We evaluated the risk of being diagnosed with various psychiatric disorders after an attention-deficit/hyperactivity disorder (ADHD) diagnosis using data from South Korea's National Health Insurance Service from 2002 to 2019, which covers approximately 97% of the country's population. ADHD and control groups were selected after propensity score matching was performed for individuals diagnosed with ADHD and their age- and sex-matched counterparts from the general population. Comorbid psychiatric disorders included depressive disorder, bipolar disorder, tic disorder, and schizophrenia. The incidence of newly diagnosed psychiatric disorders was compared between the groups. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated and adjusted for ADHD medication prescription. After matching, 353,898 individuals were assigned to each of the two groups. Compared to the control group, the ADHD group showed a significantly higher risk of being subsequently diagnosed with depressive disorder, bipolar disorder, schizophrenia, and tic disorder. The onset age of depressive disorder, bipolar disorder, and schizophrenia in the ADHD group was 16-17 years, approximately 5 years earlier than that in the control group. The risk for depression was the highest in individuals with high income levels, and that for schizophrenia was the highest among rural patients. The median length of the follow-up time until the diagnosis of each comorbid psychiatric disorder was 7.53, 8.43, 8.53, and 8.34 years for depressive disorder, bipolar disorder, schizophrenia, and tic disorder, respectively. Individuals with ADHD had an overall higher risk of being diagnosed with subsequent psychiatric disorders than did the controls. Hence, they should be carefully screened for other psychiatric symptoms from an early age and followed up for an extended duration, along with appropriate interventions for ADHD symptoms, including psychosocial treatments and educational approaches.

5.
Development ; 147(8)2020 04 27.
Article in English | MEDLINE | ID: mdl-32341029

ABSTRACT

Mammalian oocytes are arrested at G2/prophase of the first meiosis. After a hormone surge, oocytes resume meiosis, undergoing germinal vesicle breakdown (GVBD). This process is regulated by Cdk1/cyclin B1. Here, we report that Mis12 is required for G2/M transition by regulating cyclin B1 accumulation via Cdc14B-mediated APC/CCdh1 regulation, but is not essential for spindle and chromosome dynamics during meiotic maturation. Depletion of Mis12 severely compromised GVBD by impairing cyclin B1 accumulation. Importantly, impaired GVBD after Mis12 depletion was rescued not only by overexpressing cyclin B1 but also by depleting Cdc14B or Cdh1. Notably, oocytes rescued by cyclin B1 overexpression exhibited normal spindle and chromosome organization with intact kinetochore-microtubule attachments. In addition, after being rescued by cyclin B1 overexpression, Mis12-depleted oocytes normally extruded polar bodies. Moreover, Mis12-depleted oocytes formed pronuclear structures after fertilization but failed to develop beyond zygotes. Interestingly, Mis12 was localized in the cytoplasm and spindle poles in oocytes, in contrast to kinetochore localization in somatic cells. Therefore, our results demonstrate that Mis12 is required for meiotic G2/M transition but is dispensable for meiotic progression through meiosis I and II.


Subject(s)
Anaphase-Promoting Complex-Cyclosome/metabolism , Cyclin B1/metabolism , Dual-Specificity Phosphatases/metabolism , G2 Phase , Meiosis , Microtubule-Associated Proteins/metabolism , Oocytes/metabolism , Animals , Female , Kinetochores/metabolism , Mice , Models, Biological , Nuclear Envelope/metabolism , Protein Stability , Spindle Apparatus/metabolism , Spindle Poles/metabolism
6.
BMC Cancer ; 23(1): 1263, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38129815

ABSTRACT

BACKGROUND: The maintenance of spindle pole integrity is essential for spindle assembly and chromosome segregation during mitosis. However, the underlying mechanisms governing spindle pole integrity remain unclear. METHODS: ENSA was inhibited by siRNA or MKI-2 treatment and its effect on cell cycle progression, chromosome alignment and microtubule alignment was observed by immunohistochemical staining and western blotting. PP2A-B55α knockdown by siRNA was performed to rescue the phenotype caused by ENSA inhibition. The interaction between ENSA and Aurora A was detected by in situ PLA. Furthermore, orthotopic implantation of 4Tl-luc cancer cells was conducted to confirm the consistency between the in vitro and in vivo relationship of the ENSA-Aurora A interaction. RESULTS: During mitosis, p-ENSA is localized at the spindle poles, and the inhibition of ENSA results in mitotic defects, such as misaligned chromosomes, multipolar spindles, asymmetric bipolar spindles, and centrosome defects, with a delay in mitotic progression. Although the mitotic delay caused by ENSA inhibition was rescued by PP2A-B55α depletion, spindle pole defects persisted. Notably, we observed a interaction between ENSA and Aurora A during mitosis, and inhibition of ENSA reduced Aurora A expression at the mitotic spindle poles. Injecting MKI-2-sensitized tumors led to increased chromosomal instability and downregulation of the MASTL-ENSA-Aurora A pathway in an orthotopic breast cancer mouse model. CONCLUSIONS: These findings provide novel insights into the regulation of spindle pole integrity by the MASTL-ENSA-Aurora A pathway during mitosis, highlighting the significance of ENSA in recruiting Aurora A to the spindle pole, independent of PP2A-B55α.


Subject(s)
Spindle Apparatus , Spindle Poles , Animals , Mice , Spindle Apparatus/metabolism , Spindle Poles/metabolism , Centrosome/metabolism , Mitosis , RNA, Small Interfering/metabolism
7.
Int Endod J ; 56(4): 432-446, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36462163

ABSTRACT

AIM: The physiological effects and cellular mechanism of 25-hydroxycholesterol (25-HC), which is an oxysterol synthesized from cholesterol by cholesterol-25-hydroxylase (CH25H) expressed under inflammatory conditions, are still largely unknown during odontoclastogenesis. This study aimed to evaluate 25-HC-induced odontoclastogenesis and its cellular mechanisms in odontoblast-like MDPC-23 cells. METHODOLOGY: To investigate 25-HC-induced odontoclastogenesis of MDPC-23 cells and its cellular mechanism, haemotoxylin and eosin staining, tartrate-resistant acid phosphatase (TRAP) staining, dentine resorption assay, zymography, reactive oxygen species (ROS) detection, immunocytochemistry, and nuclear translocation were performed. The experimental values are presented as mean ± standard deviation and were compared using analysis of variance, followed by post hoc multiple comparisons (Tukey's test) using SPSS software version 22 (IBM Corp.). A p-value <.05 was considered statistically significant. RESULTS: Lipopolysaccharide or receptor activator of nuclear factor-κB ligand (RANKL) induced the synthesis of 25-HC via the expression of CH25H in MDPC-23 cells (p < .01). Multinucleated giant cells with morphological characteristics and TRAP activity of the odontoclast were increased by 25-HC in MDPC-23 cells (p < .01). Moreover, 25-HC increased dentine resorption through the expression and activity of matrix metalloproteinases in MDPC-23 cells. It not only increased the expression of odontoclastogenic biomarkers but also translocated cytosolic nuclear factor-κB (NF-κB) to the nucleus in MDPC-23 cells. Additionally, 25-HC not only increased the production of ROS (p < .01), expression of inflammatory mediators (p < .01), pro-inflammatory cytokines, receptor activator of NF-κB (RANK), and RANKL but also suppressed the expression of osteoprotegerin (OPG) in MDPC-23 cells. In contrast, CDDO-Me, a chemical NF-κB inhibitor, decreased TRAP activity (p < .01) and downregulated the expression of the odontoclastogenic biomarkers, including RANK and RANKL, in MDPC-23 cells. CONCLUSION: 25-HC induced odontoclastogenesis by modulating the RANK-RANKL-OPG axis via NF-κB activation in MDPC-23 cells. Therefore, these findings provide that 25-HC derived from cholesterol metabolism may be involved in the pathophysiological etiological factors of internal tooth resorption.


Subject(s)
NF-kappa B , Odontoblasts , Cell Differentiation , NF-kappa B/metabolism , Odontoblasts/metabolism , Osteoclasts , Osteoprotegerin/metabolism , RANK Ligand/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation , Animals , Mice
8.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069014

ABSTRACT

Radiotherapy for cancer has been known to affect the responses of immune cells, especially those of CD8+ T cells that play a pivotal role in anti-tumor immunity. Clinical success of immune checkpoint inhibitors led to an increasing interest in the ability of radiation to modulate CD8+ T cell responses. Recent studies that carefully analyzed CD8+ T cell responses following radiotherapy suggest the beneficial roles of radiotherapy on anti-tumor immunity. In addition, numerous clinical trials to evaluate the efficacy of combining radiotherapy with immune checkpoint inhibitors are currently undergoing. In this review, we summarize the current status of knowledge regarding the changes in CD8+ T cells following radiotherapy from various preclinical and clinical studies. Furthermore, key biological mechanisms that underlie such modulation, including both direct and indirect effects, are described. Lastly, we discuss the current evidence and essential considerations for harnessing radiotherapy as a combination partner for immune checkpoint inhibitors.


Subject(s)
Neoplasms , Radiation Oncology , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , CD8-Positive T-Lymphocytes , Combined Modality Therapy , Neoplasms/drug therapy , Neoplasms/radiotherapy , Tumor Microenvironment
9.
Toxicol Mech Methods ; 33(6): 437-451, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36718047

ABSTRACT

Cadmium (Cd) accumulates in the body through contaminated foods or water and causes pathological damage to the liver via oxidative stress and inflammatory reactions. This study was conducted to explore the effects of dendropanoxide (DPx) on Cd-induced hepatotoxicity in rats. Sprague-Dawley (SD) rats were injected with CdCl2 (7 mg/kg body weight) intraperitoneally for 14 days for the induction of liver dysfunction. The CdCl2-exposed rats were subjected to DPx (10 mg/kg) or silymarin (50 mg/kg). The animals were euthanized after 24 h of the last CdCl2 injection and the serum biochemical parameters, lipid content, pro-inflammatory cytokine levels, apoptotic cell death and histopathology of the tissues were analyzed. Additionally, the activity of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), was measured. Compared to controls, Cd-injected rats showed significantly elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol, and pro-inflammatory cytokines, and a remarkable decrease in SOD and CAT activities. Importantly, Cd-induced liver damage was drastically ameliorated by treatment with DPx or silymarin. Treatment with DPx protected the Cd-induced histopathological hepatic injury, as confirmed by the evaluation of TUNEL assay. DPx treatment significantly reduced Bax and caspase-3 expression in Cd-injected rats. Additionally, HO-1 and NRF2 expressions were significantly increased after DPx administration in the liver of Cd-injected rats. Our data indicate that DPx successfully prevents Cd-induced hepatotoxicity by emphasizing the antioxidant and anti-inflammatory effect.


Subject(s)
Chemical and Drug Induced Liver Injury , Silymarin , Rats , Animals , Cadmium/toxicity , Cadmium/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Rats, Sprague-Dawley , Cadmium Chloride/toxicity , Cadmium Chloride/metabolism , Liver , Oxidative Stress , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Superoxide Dismutase/metabolism , Chemical and Drug Induced Liver Injury/pathology
10.
J Cell Physiol ; 237(1): 833-845, 2022 01.
Article in English | MEDLINE | ID: mdl-34407217

ABSTRACT

A prolonged time span between ovulation and fertilization can cause postovulatory aging of oocytes, which impairs oocyte quality and subsequent embryo development. Telomere attrition has long been considered as the primary hallmark of aging or the cause of age-associated diseases. However, the status of telomere and its regulation during postovulatory oocyte aging are poorly understood. Here we found that oocytes experience telomere shortening during postovulatory aging, although they have the capacity to maintain telomere length. However, translationally controlled tumor protein (TCTP) overexpression could reverse age-associated telomere shortening by upregulating telomerase activity in mouse oocytes. Telomere length in mature oocytes gradually decreased with postovulatory aging, which was associated with a marked reduction in TRF1 expression, decreased telomerase activity, and decreased homologous combination (HR)-based alternative lengthening of telomeres (ALT) with a concomitant increase in oxidative stress. Surprisingly, however, overexpression of TCTP led to a remarkable increase in telomere length during postovulatory aging. Notably, neither TRF1 nor BRCA1 level was altered by TCTP overexpression. Moreover, TCTP-mediated telomere lengthening was not blocked by HR inhibition. In striking contrast, telomerase activity, as well as TERT and TERC levels, increased after TCTP overexpression. Importantly, unlike the chromosome-wide distribution of endogenous TCTP, overexpressed TCTP was ectopically localized at telomeres, implying that TCTP overexpression is required to increase telomerase activity. Collectively, our results demonstrate that TCTP prevents telomere attrition during postovulatory aging by upregulating telomerase activity in mouse oocytes.


Subject(s)
Telomerase , Tumor Protein, Translationally-Controlled 1/metabolism , Animals , Female , Mice , Oocytes/metabolism , Oogenesis , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Telomere Shortening
11.
Cancer Sci ; 113(1): 145-155, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34714604

ABSTRACT

To improve the poor survival rate of lung cancer patients, we investigated the role of HDGF-related protein 3 (HRP-3) as a potential biomarker for lung cancer. The expression of endogenous HRP-3 in human lung cancer tissues and xenograft tumor models is indicative of its clinical relevance in lung cancer. Additionally, we demonstrated that HRP-3 directly binds to the E2F1 promoter on chromatin. Interestingly, HRP-3 depletion in A549 cells impedes the binding of HRP-3 to the E2F1 promoter; this in turn hampers the interaction between Histone H3/H4 and HDAC1/2 on the E2F1 promoter, while concomitantly inducing Histone H3/H4 acetylation around the E2F1 promoter. The enhanced Histone H3/H4 acetylation on the E2F1 promoter through HRP-3 depletion increases the transcription level of E2F1. Furthermore, the increased E2F1 transcription levels lead to the enhanced transcription of Cyclin E, known as the E2F1-responsive gene, thus inducing S-phase accumulation. Therefore, our study provides evidence for the utility of HRP-3 as a biomarker for the prognosis and treatment of lung cancer. Furthermore, we delineated the capacity of HRP-3 to regulate the E2F1 transcription level via histone deacetylation.


Subject(s)
Biomarkers, Tumor/metabolism , Cyclin E/metabolism , E2F1 Transcription Factor/genetics , Histone Deacetylases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/pathology , A549 Cells , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Neoplasm Transplantation , Promoter Regions, Genetic , Signal Transduction
12.
Biochem Biophys Res Commun ; 636(Pt 2): 24-30, 2022 12 25.
Article in English | MEDLINE | ID: mdl-36343487

ABSTRACT

Although radiotherapy (RT) increases the extra centrosomes of cancer cells compared to normal cells, centrosome clustering of cancer cells with amplified centrosomes ensures bipolar mitosis for cell proliferation in response to RT. Recent evidence suggests that centrosome clustering is a tumor-selective target for improving RT in breast cancer cells. However, whether centrosome de-clustering is involved in the activation of innate immunity in response to RT remains unknown. In this study, we showed that centrosome de-clustering of irradiated cancer cells modulates cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING)-mediated innate immunity in monocytes and macrophages after co-culture. Centrosome de-clustering intensifies mitotic abnormalities and cytosolic dsDNA in breast cancer cells in response to irradiation. Unexpectedly, centrosome de-clustering did not modulate the cGAS-STING signaling pathway in irradiated breast cancer cells. Importantly, centrosome de-clustering activated the cGAS-STING signaling pathway in human monocytes and mouse macrophages after co-culture with irradiated breast cancer cells. Thus, our data provide the first evidence that centrosome de-clustering of irradiated breast cancer cells induces innate immunity in tumor-associated immune cells.


Subject(s)
Breast Neoplasms , Centrosome , Immunity, Innate , Membrane Proteins , Animals , Female , Humans , Mice , Breast Neoplasms/radiotherapy , Centrosome/metabolism , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism
13.
Biol Pharm Bull ; 45(1): 51-62, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34732594

ABSTRACT

Methylglyoxal (MGO), which is produced as a byproduct of glucose metabolism, is the leading to diabetic cardiovascular complications. Salvia miltiorrhiza Bunge (Lamiaceae) has been reported as a potential plant to control diabetes and cardiovascular disease. However, no report exists on the effect of Salvia miltiorrhiza Bunge extract (SME) on MGO-induced glucotoxicity in human umbilical vein endothelial cells (HUVECs). We demonstrated the protective effects of SME (1, 5, and 10 µg/mL) and its components against MGO-induced endothelial dysfunction in HUVECs. Cytotoxicity was evaluated using the several in vitro experiments. Additionally, the protein expression of receptor of advanced glycation end-products (RAGE), mitogen-activated protein kinase (MAPK) pathway and glyoxalase system were measured. Then, the inhibitory effects of SME and its main components on MGO-induced oxidative stress, radical scavenging, formation of MGO-derived advanced glycation end products (AGEs), and MGO-AGEs crosslinking were evaluated. SME (10 µg/mL) strongly prevented expressed levels of RAGE, MGO-induced apoptosis and reduced reactive oxygen species (ROS) generation in HUVECs, comparing with 1 mM aminoguanidine. Additionally, SME (5 and 10 µg/mL) reduced the expression of proteins (e.g., p-extracellular signal-regulated kinase (ERK) and p-p38) in the MAPKs pathway and upregulated the glyoxalase system in HUVECs. SME (0.5-10 mg/mL), dihydrotanshinone (0.4 mM), and rosmarinic acid (0.4 mM) prevented MGO-AGEs formation and broke the MGO-AGE crosslinking. These results show that S. miltiorrhiza has protective effects against MGO-induced glucotoxicity by regulating the proteins involved in apoptosis, glyoxalase system and antioxidant activity. We expect that S. miltiorrhiza is a potential natural resource for the treatment of MGO-induced vascular endothelial dysfunction.


Subject(s)
Pyruvaldehyde , Salvia miltiorrhiza , Apoptosis , Extracellular Signal-Regulated MAP Kinases/metabolism , Glycation End Products, Advanced/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Oxidative Stress , Pyruvaldehyde/metabolism , Pyruvaldehyde/toxicity , Reactive Oxygen Species/metabolism , Salvia miltiorrhiza/metabolism
14.
J Appl Clin Med Phys ; 23(8): e13706, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35727562

ABSTRACT

This study is to investigate the optimal treatment option for synchronous bilateral breast cancer (SBBC) by comparing dosimetric and radiobiological parameters of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) plans using single and dual isocenters. Twenty patients with SBBC without lymph node involvement were selected retrospectively. Four treatment plans were generated for each patient using the Eclipse treatment planning system (Varian Medical System, Palo Alto, CA, USA) following two delivery techniques with two isocenter conditions-IMRT using a single isocenter (IMRT_Iso1), VMAT using a single isocenter (VMAT_Iso1), IMRT using dual isocenters (IMRT_Iso2), and VMAT using dual isocenters (VMAT_Iso2). A dose of 42.56 Gy in 16 fractions was prescribed for the planning target volume (PTV). All plans were calculated using the Acuros XB algorithm and a photon optimizer for a 6-MV beam of a Vital Beam linear accelerator. PTV-related dosimetric parameters were analyzed. Further, the homogeneity index, conformity index, and conformation number were computed to evaluate plan quality. Dosimetric parameters were also measured for the organs at risk (OARs). In addition, the equivalent uniform dose corresponding to an equivalent dose related to a reference of 2 Gy per fraction, the tumor control probability, and the normal tissue complication probability were calculated based on the dose-volume histogram to investigate the radiobiological impact on PTV and OARs. IMRT_Iso1 exhibited similar target coverage and a certain degree of dosimetric improvement in OAR sparing compared to the other techniques. It also exhibited some radiobiological improvement, albeit insignificant. Although IMRT_Iso1 significantly increased monitor unit compared to VMAT_Iso1, which is the best option in terms of delivery efficiency, there was only a 22% increase in delivery time. Therefore, in conclusion, IMRT_Iso1, the complete treatment of which can be completed using a single setup, is the most effective method for treating SBBC.


Subject(s)
Breast Neoplasms , Radiotherapy, Intensity-Modulated , Breast Neoplasms/radiotherapy , Female , Humans , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
15.
Molecules ; 27(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35956750

ABSTRACT

7α,25-dihydroxycholesterol (7α,25-DHC) is an oxysterol synthesized from 25-hydroxycholesterol by cytochrome P450 family 7 subfamily B member 1 (CYP7B1) and is a monooxygenase (oxysterol-7α-hydroxylase) expressed under inflammatory conditions in various cell types. In this study, we verified that 7α,25-DHC-induced oxiapoptophagy is mediated by apoptosis, oxidative stress, and autophagy in L929 mouse fibroblasts. MTT assays and live/dead cell staining revealed that cytotoxicity was increased by 7α,25-DHC in L929 cells. Consequentially, cells with condensed chromatin and altered morphology were enhanced in L929 cells incubated with 7α,25-DHC for 48 h. Furthermore, apoptotic population was increased by 7α,25-DHC exposure through the cascade activation of caspase-9, caspase-3, and poly (ADP-ribose) polymerase in the intrinsic pathway of apoptosis in these cells. 7α,25-DHC upregulated reactive oxygen species (ROS) in L929 cells. Expression of autophagy biomarkers, including beclin-1 and LC3, was significantly increased by 7α,25-DHC treatment in L929 cells. 7α,25-DHC inhibits the phosphorylation of Akt associated with autophagy and increases p53 expression in L929 cells. In addition, inhibition of G-protein-coupled receptor 183 (GPR183), a receptor of 7α,25-DHC, using GPR183 specific antagonist NIBR189 suppressed 7α,25-DHC-induced apoptosis, ROS production, and autophagy in L929 cells. Collectively, GPR183 regulates 7α,25-DHC-induced oxiapoptophagy in L929 cells.


Subject(s)
Oxysterols , Receptors, G-Protein-Coupled , Animals , Apoptosis/genetics , Apoptosis/physiology , Autophagy/genetics , Autophagy/physiology , Fibroblasts/metabolism , Hydroxycholesterols/metabolism , Mice , Oxysterols/metabolism , Reactive Oxygen Species/metabolism , Receptors, G-Protein-Coupled/metabolism
16.
Korean J Physiol Pharmacol ; 26(1): 37-45, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34965994

ABSTRACT

The aim of the present study was to investigate the physiological role of nicotinamide phosphoribosyltransferase (NAMPT) associated with odontogenic differentiation during tooth development in mice. Mouse dental papilla cell-23 (MDPC- 23) cells cultured in differentiation media were stimulated with the specific NAMPT inhibitor, FK866, and Visfatin (NAMPT) for up to 10 days. The cells were evaluated after 0, 4, 7, and 10 days. Cell viability was measured using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay. The mineralization assay was performed by staining MDPC-23 cells with Alizarin Red S solution. After cultivation, MDPC-23 cells were harvested for quantitative PCR or Western blotting. Analysis of variance was performed using StatView 5.0 software (SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05. The expression of NAMPT increased during the differentiation of murine odontoblast-like MDPC-23 cells. Furthermore, the up-regulation of NAMPT promoted odontogenic differentiation and accelerated mineralization through an increase in representative odontoblastic biomarkers, such as dentin sialophosphoprotein, dentin matrix protein-1, and alkaline phosphatase in MDPC-23 cells. However, treatment of the cells with the NAMPT inhibitor, FK866, attenuated odontogenic differentiation, as evidenced by the suppression of odontoblastic biomarkers. These data indicate that NAMPT regulated odontoblastic differentiation through the regulation of odontoblastic biomarkers. The increase in NAMPT expression in odontoblasts was closely related to the formation of the extracellular matrix and dentin via the Runx signaling pathway. Therefore, these data suggest that NAMPT is a critical regulator of odontoblast differentiation during tooth development.

17.
Korean J Physiol Pharmacol ; 26(6): 447-456, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36302620

ABSTRACT

The present study was carried out to investigate the effect of Arctigenin on cell growth and the mechanism of cell death elicited by Arctigenin were examined in FaDu human pharyngeal carcinoma cells. To determine the apoptotic activity of Arctigenin in FaDu human pharyngeal carcinoma cells, cell viability assay, DAPI staining, caspase activation analysis, and immunoblotting were performed. Arctigenin inhibited the growth of cells in a dose-dependent manner and induced nuclear condensation and fragmentation. Arctigenin-treated cells showed caspase-3/7 activation and increased apoptosis versus control cells. FasL, a death ligand associated with extrinsic apoptotic signaling pathways, was up-regulated by Arctigenin treatment. Moreover, caspase-8, a part of the extrinsic apoptotic pathway, was activated by Arctigenin treatments. Expressions of anti-apoptotic factors such as Bcl-2 and Bcl-xL, components of the mitochondria-dependent intrinsic apoptosis pathway, significantly decreased following Arctigenin treatment. The expressions of pro-apoptotic factors such as BAX, BAD and caspase-9, and tumor suppressor -53 increased by Arctigenin treatments. In addition, Arctigenin activated caspase-3 and poly (ADP-ribose) polymerase (PARP) induced cell death. Arctigenin also inhibited the proliferation of FaDu cells by the suppression of p38, NF-κB, and Akt signaling pathways. These results suggest that Arctigenin may inhibit cell proliferation and induce apoptotic cell death in FaDu human pharyngeal carcinoma cells through both the mitochondria-mediated intrinsic pathway and the death receptor-mediated extrinsic pathway.

18.
Biochem Biophys Res Commun ; 534: 973-979, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33176910

ABSTRACT

Here, we demonstrate that interleukin-1ß (IL-1ß) contributes to the γ-ionizing radiation (IR)-induced increase of migration/invasion in A549 lung cancer cells, and that this occurs via RIP1 upregulation. We initially observed that the protein expression and secreted concentration of IL-1ß were increased upon exposure of A549 cells to IR. We then demonstrated that IR-induced IL-1ß is located downstream of the NF-κB-RIP1 signaling pathway. Treatments with siRNA and specific pharmaceutical inhibitors of RIP1 and NF-κB suppressed the IR-induced increases in the protein expression and secreted concentration of IL-1ß. IL-1Ra, an antagonist of IL-1ß, treatment suppressed the IR-induced epithelial-mesenchymal transition (EMT) and IR-induced invasion/migration in vitro. These results suggest that IL-1ß could regulate IR-induced EMT. We also found that IR could induce the expression of IL-1ß expression in vivo and that of IL-1 receptor (R) I/II in vitro and in vivo. The IR-induced increases in the protein levels of IL-1 RI/II and IL-1ß suggest that an autocrine loop between IL-1ß and IL-1 RI/II might play important roles in IR-induced EMT and migration/invasion. Based on these collective results, we propose that IR concomitantly activates NF-κB and RIP1 to trigger the NF-κB-RIP1-IL-1ß-IL-1RI/II-EMT pathway, ultimately promoting metastasis.


Subject(s)
Interleukin-1beta/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/radiotherapy , NF-kappa B/metabolism , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , A549 Cells , Animals , Cell Movement/radiation effects , Gamma Rays , Humans , Interleukin-1beta/genetics , Lung Neoplasms/genetics , Mice, Inbred BALB C , Neoplasm Invasiveness/genetics , Radiation, Ionizing , Up-Regulation/radiation effects
19.
J Appl Clin Med Phys ; 22(2): 69-76, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33433064

ABSTRACT

PURPOSE: In passive scattering proton beam therapy, scattered protons from the snout and aperture increase the superficial dose, however, treatment planning systems (TPSs) based on analytic algorithms (such as proton convolution superposition) are often inaccurate in this aspect. This additional dose can cause permanent alopecia or severe radiation dermatitis. This study aimed to evaluate the effect of bolus on the superficial radiation dose in passive scattering proton beam therapy. METHODS: We drew a clinical target volume (CTV) and a scalp-p (phantom), and created plans using a TPS for a solid water phantom with and without bolus. We calculated the dose distribution in the established plans independently with Monte Carlo (MC) simulation and measured the actual dose distribution with an array of ion chambers and radiochromic films. To assess the clinical impact of bolus on scalp dose, we conducted independent dose verification using MC simulation in a clinical case. RESULTS: In the solid water phantom without bolus, the calculated scalp-p volume receiving 190 cGy was 20% with TPS but 80% with MC simulation when the CTV received 200 cGy. With 2 cm bolus, this decreased from 80% to 10% in MC simulation. With the measurements, average superficial dose to the scalp-p was reduced by 5.2% when 2 cm bolus was applied. In the clinical case, the scalp-c (clinical) volume receiving 3000 cGy decreased from 74% to 63% when 2 cm bolus was applied. CONCLUSION: This study revealed that bolus can reduce radiation dose at the superficial body area and alleviate toxicity in passive scattering proton beam therapy.


Subject(s)
Proton Therapy , Algorithms , Humans , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Scattering, Radiation
20.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298950

ABSTRACT

More than 80% of colorectal cancer patients have adenomatous polyposis coli (APC) mutations, which induce abnormal WNT/ß-catenin activation. Tankyrase (TNKS) mediates the release of active ß-catenin, which occurs regardless of the ligand that translocates into the nucleus by AXIN degradation via the ubiquitin-proteasome pathway. Therefore, TNKS inhibition has emerged as an attractive strategy for cancer therapy. In this study, we identified pyridine derivatives by evaluating in vitro TNKS enzyme activity and investigated N-([1,2,4]triazolo[4,3-a]pyridin-3-yl)-1-(2-cyanophenyl)piperidine-4-carboxamide (TI-12403) as a novel TNKS inhibitor. TI-12403 stabilized AXIN2, reduced active ß-catenin, and downregulated ß-catenin target genes in COLO320DM and DLD-1 cells. The antitumor activities of TI-12403 were confirmed by the viability of the colorectal cancer cells and its lack of visible toxicity in DLD-1 xenograft mouse model. In addition, combined 5-FU and TI-12403 treatment synergistically inhibited proliferation to a greater extent than that in a single drug treatment. Our observations suggest that TI-12403, a novel selective TNKS1 inhibitor, may be a suitable compound for anticancer drug development.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Drug Discovery , Enzyme Inhibitors , Neoplasm Proteins/antagonists & inhibitors , Pyridines , Tankyrases/antagonists & inhibitors , Thiazoles , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Neoplasm Proteins/metabolism , Pyridines/chemistry , Pyridines/pharmacology , Tankyrases/metabolism , Thiazoles/chemistry , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL