Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 24(9): 1443-1457, 2023 09.
Article in English | MEDLINE | ID: mdl-37563309

ABSTRACT

Tissue-resident macrophages (TRMs) are long-lived cells that maintain locally and can be phenotypically distinct from monocyte-derived macrophages. Whether TRMs and monocyte-derived macrophages have district roles under differing pathologies is not understood. Here, we showed that a substantial portion of the macrophages that accumulated during pancreatitis and pancreatic cancer in mice had expanded from TRMs. Pancreas TRMs had an extracellular matrix remodeling phenotype that was important for maintaining tissue homeostasis during inflammation. Loss of TRMs led to exacerbation of severe pancreatitis and death, due to impaired acinar cell survival and recovery. During pancreatitis, TRMs elicited protective effects by triggering the accumulation and activation of fibroblasts, which was necessary for initiating fibrosis as a wound healing response. The same TRM-driven fibrosis, however, drove pancreas cancer pathogenesis and progression. Together, these findings indicate that TRMs play divergent roles in the pathogenesis of pancreatitis and cancer through regulation of stromagenesis.


Subject(s)
Pancreas , Pancreatitis , Mice , Animals , Pancreas/pathology , Macrophages , Pancreatitis/genetics , Pancreatitis/pathology , Fibrosis , Pancreatic Neoplasms
2.
Cell ; 176(4): 897-912.e20, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30686579

ABSTRACT

A complete chart of cis-regulatory elements and their dynamic activity is necessary to understand the transcriptional basis of differentiation and function of an organ system. We generated matched epigenome and transcriptome measurements in 86 primary cell types that span the mouse immune system and its differentiation cascades. This breadth of data enable variance components analysis that suggests that genes fall into two distinct classes, controlled by either enhancer- or promoter-driven logic, and multiple regression that connects genes to the enhancers that regulate them. Relating transcription factor (TF) expression to the genome-wide accessibility of their binding motifs classifies them as predominantly openers or closers of local chromatin accessibility, pinpointing specific cis-regulatory elements where binding of given TFs is likely functionally relevant, validated by chromatin immunoprecipitation sequencing (ChIP-seq). Overall, this cis-regulatory atlas provides a trove of information on transcriptional regulation through immune differentiation and a foundational scaffold to define key regulatory events throughout the immunological genome.


Subject(s)
Immune System/immunology , Immune System/metabolism , Regulatory Elements, Transcriptional/genetics , Animals , Binding Sites/genetics , Chromatin , Chromatin Immunoprecipitation/methods , Enhancer Elements, Genetic/genetics , Epigenomics/methods , Gene Expression Regulation/genetics , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Transcription Factors/metabolism , Transcriptome/genetics
3.
Nat Immunol ; 21(10): 1194-1204, 2020 10.
Article in English | MEDLINE | ID: mdl-32895539

ABSTRACT

Early atherosclerosis depends upon responses by immune cells resident in the intimal aortic wall. Specifically, the healthy intima is thought to be populated by vascular dendritic cells (DCs) that, during hypercholesterolemia, initiate atherosclerosis by being the first to accumulate cholesterol. Whether these cells remain key players in later stages of disease is unknown. Using murine lineage-tracing models and gene expression profiling, we reveal that myeloid cells present in the intima of the aortic arch are not DCs but instead specialized aortic intima resident macrophages (MacAIR) that depend upon colony-stimulating factor 1 and are sustained by local proliferation. Although MacAIR comprise the earliest foam cells in plaques, their proliferation during plaque progression is limited. After months of hypercholesterolemia, their presence in plaques is overtaken by recruited monocytes, which induce MacAIR-defining genes. These data redefine the lineage of intimal phagocytes and suggest that proliferation is insufficient to sustain generations of macrophages during plaque progression.


Subject(s)
Aorta/immunology , Macrophages/immunology , Monocytes/immunology , Plaque, Atherosclerotic/immunology , Tunica Intima/immunology , Animals , Cell Differentiation , Cell Lineage , Cell Movement , Cell Proliferation , Cells, Cultured , Cholesterol/metabolism , Disease Progression , Humans , Macrophage Colony-Stimulating Factor/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Parabiosis , Phagocytosis
4.
Immunity ; 54(12): 2795-2811.e9, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34788601

ABSTRACT

Lymphangitis and the formation of tertiary lymphoid organs (TLOs) in the mesentery are features of Crohn's disease. Here, we examined the genesis of these TLOs and their impact on disease progression. Whole-mount and intravital imaging of the ileum and ileum-draining collecting lymphatic vessels (CLVs) draining to mesenteric lymph nodes from TNFΔARE mice, a model of ileitis, revealed TLO formation at valves of CLVs. TLOs obstructed cellular and molecular outflow from the gut and were sites of lymph leakage and backflow. Tumor necrosis factor (TNF) neutralization begun at early stages of TLO formation restored lymph transport. However, robustly developed, chronic TLOs resisted regression and restoration of flow after TNF neutralization. TNF stimulation of cultured lymphatic endothelial cells reprogrammed responses to oscillatory shear stress, preventing the induction of valve-associated genes. Disrupted transport of immune cells, driven by loss of valve integrity and TLO formation, may contribute to the pathology of Crohn's disease.


Subject(s)
Crohn Disease/immunology , Endothelial Cells/immunology , Ileum/immunology , Lymph/metabolism , Lymphatic Vessels/immunology , Mesentery/immunology , Tertiary Lymphoid Structures/immunology , Tumor Necrosis Factor-alpha/metabolism , Animals , Cell Movement , Cells, Cultured , Disease Models, Animal , Humans , Ileitis , Lymphangitis , Mice , Mice, Knockout , Stress, Mechanical
5.
Immunity ; 51(1): 119-130.e5, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31231034

ABSTRACT

Tissue-resident macrophages require specific milieus for the maintenance of defining gene-expression programs. Expression of the transcription factor GATA6 is required for the homeostasis, function and localization of peritoneal cavity-resident macrophages. Gata6 expression is maintained in a non-cell autonomous manner and is elicited by the vitamin A metabolite, retinoic acid. Here, we found that the GATA6 transcriptional program is a common feature of macrophages residing in all visceral body cavities. Retinoic acid-dependent and -independent hallmark genes of GATA6+ macrophages were induced by mesothelial and fibroblastic stromal cells that express the transcription factor Wilms' Tumor 1 (WT1), which drives the expression of two rate-limiting enzymes in retinol metabolism. Depletion of Wt1+ stromal cells reduced the frequency of GATA6+ macrophages in the peritoneal, pleural and pericardial cavities. Thus, Wt1+ mesothelial and fibroblastic stromal cells constitute essential niche components supporting the tissue-specifying transcriptional landscape and homeostasis of cavity-resident macrophages.


Subject(s)
GATA6 Transcription Factor/metabolism , Macrophages/physiology , Pericardium/immunology , Peritoneal Cavity/physiology , Pleural Cavity/immunology , Repressor Proteins/metabolism , Stromal Cells/physiology , Animals , Cell Differentiation , Cells, Cultured , GATA6 Transcription Factor/genetics , Homeostasis , Mice , Mice, Inbred C57BL , Mice, Transgenic , Repressor Proteins/genetics , Tretinoin/metabolism , WT1 Proteins
6.
Immunity ; 47(2): 323-338.e6, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28813661

ABSTRACT

Tumor-associated macrophages (TAMs) are essential components of the cancer microenvironment and play critical roles in the regulation of tumor progression. Optimal therapeutic intervention requires in-depth understanding of the sources that sustain macrophages in malignant tissues. In this study, we investigated the ontogeny of TAMs in murine pancreatic ductal adenocarcinoma (PDAC) models. We identified both inflammatory monocytes and tissue-resident macrophages as sources of TAMs. Unexpectedly, significant portions of pancreas-resident macrophages originated from embryonic development and expanded through in situ proliferation during tumor progression. Whereas monocyte-derived TAMs played more potent roles in antigen presentation, embryonically derived TAMs exhibited a pro-fibrotic transcriptional profile, indicative of their role in producing and remodeling molecules in the extracellular matrix. Collectively, these findings uncover the heterogeneity of TAM origin and functions and could provide therapeutic insight for PDAC treatment.


Subject(s)
Carcinogenesis , Carcinoma, Ductal/immunology , Macrophages/immunology , Pancreas/pathology , Pancreatic Neoplasms/immunology , Animals , Carcinoma, Ductal/pathology , Cell Differentiation , Cell Line, Tumor , Cell Movement , Extracellular Matrix/metabolism , Fetal Development , Fibrosis , Hematopoiesis , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/immunology , Pancreatic Neoplasms/pathology , Tumor Microenvironment
7.
Immunity ; 45(3): 468-470, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27653599

ABSTRACT

Macrophages residing in different organs have diverse gene-expression programs. Mass et al. (2016) propose that this diversity develops "at home"-within those organs-after the recruitment of a common precursor that had not made prior commitments to diversity.


Subject(s)
Macrophages/physiology , Animals , Gene Expression/physiology
8.
Proc Natl Acad Sci U S A ; 119(35): e2121251119, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35994670

ABSTRACT

GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.


Subject(s)
Amino Acids , Erythrocytes , Iron , Liver , Macrophages , Protein Serine-Threonine Kinases , Activating Transcription Factor 4/metabolism , Amino Acids/deficiency , Amino Acids/metabolism , Anemia/metabolism , Animals , Cytophagocytosis , Erythrocytes/metabolism , Gene Deletion , Hemolysis , Hypoxia/metabolism , Iron/metabolism , Liver/cytology , Lysosomes/metabolism , Macrophages/metabolism , Mice , Mice, Knockout , NF-E2-Related Factor 2/metabolism , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological
9.
Clin Infect Dis ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321565

ABSTRACT

A 32-year-old female with advanced HIV infection presented to an Australian hospital with subacute but worsening symptoms of encephalitis. Metagenomic sequencing and Dengue NS3 antigen staining of brain tissue confirmed active Dengue virus (DENV) encephalitis. The most recent possible DENV exposure was months prior in West Africa, indicating chronicity.

10.
Rev Med Virol ; 33(2): e2429, 2023 03.
Article in English | MEDLINE | ID: mdl-36790804

ABSTRACT

Among the environmental factors associated with type 1 diabetes (T1D), viral infections of the gut and pancreas has been investigated most intensely, identifying enterovirus infections as the prime candidate trigger of islet autoimmunity (IA) and T1D development. However, the association between respiratory tract infections (RTI) and IA/T1D is comparatively less known. While there are significant amounts of epidemiological evidence supporting the role of respiratory infections in T1D, there remains a paucity of data characterising infectious agents at the molecular level. This gap in the literature precludes the identification of the specific infectious agents driving the association between RTI and T1D. Furthermore, the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections on the development of IA/T1D remains undeciphered. Here, we provide a comprehensive overview of the evidence to date, implicating RTIs (viral and non-viral) as potential risk factors for IA/T1D.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Islets of Langerhans , Respiratory Tract Infections , Humans , Islets of Langerhans/pathology , COVID-19/pathology , SARS-CoV-2 , Respiratory Tract Infections/pathology
11.
Emerg Infect Dis ; 29(12): 2482-2487, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37987582

ABSTRACT

Avian paramyxovirus type 1 (APMV-1) is a virus of birds that results in a range of outcomes, from asymptomatic infections to outbreaks of systemic respiratory and neurologic disease, depending on the virus strain and the avian species affected. Humans are rarely affected; those who are predominantly experience mild conjunctivitis. We report a fatal case of neurologic disease in a 2-year-old immunocompromised child in Australia. Metagenomic sequencing and histopathology identified the causative agent as the pigeon variant of APMV-1. This diagnosis should be considered in neurologic conditions of undefined etiologies. Agnostic metagenomic sequencing methods are useful in such settings to direct diagnostic and therapeutic efforts.


Subject(s)
Communicable Diseases , Newcastle Disease , Animals , Child, Preschool , Humans , Australia/epidemiology , Columbidae , Newcastle Disease/epidemiology , Newcastle Disease/pathology , Newcastle disease virus , Phylogeny
12.
Immunity ; 40(5): 720-33, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24792913

ABSTRACT

Interleukin-10 (IL-10) is a pleiotropic anti-inflammatory cytokine produced and sensed by most hematopoietic cells. Genome-wide association studies and experimental animal models point at a central role of the IL-10 axis in inflammatory bowel diseases. Here we investigated the importance of intestinal macrophage production of IL-10 and their IL-10 exposure, as well as the existence of an IL-10-based autocrine regulatory loop in the gut. Specifically, we generated mice harboring IL-10 or IL-10 receptor (IL-10Rα) mutations in intestinal lamina propria-resident chemokine receptor CX3CR1-expressing macrophages. We found macrophage-derived IL-10 dispensable for gut homeostasis and maintenance of colonic T regulatory cells. In contrast, loss of IL-10 receptor expression impaired the critical conditioning of these monocyte-derived macrophages and resulted in spontaneous development of severe colitis. Collectively, our results highlight IL-10 as a critical homeostatic macrophage-conditioning agent in the colon and define intestinal CX3CR1(hi) macrophages as a decisive factor that determines gut health or inflammation.


Subject(s)
Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Interleukin-10/immunology , Macrophages/immunology , Receptors, Interleukin-10/immunology , Animals , CX3C Chemokine Receptor 1 , Cells, Cultured , Interleukin-10/genetics , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Chemokine/biosynthesis , Receptors, Interleukin-10/genetics , T-Lymphocytes, Regulatory/immunology
13.
Immunity ; 38(3): 581-95, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23395676

ABSTRACT

CD103+ dendritic cells (DCs) carry bacteria from the small intestine and can present antigens to T cells. Yet they have not been recorded sampling luminal bacteria or presenting bacterial antigens in mesentery lymph nodes. We used 2-photon microscopy in live Cx3cr1(+/gfp) ×Cd11c-YFP mice to study these processes. At steady state, sparse CD103+ DCs occupied the epithelium. They patrolled among enterocytes while extending dendrites toward the lumen, likely using tight-junction proteins to penetrate the epithelium. Challenge with Salmonella triggered chemokine- and toll-like receptor (TLR)-dependent recruitment of additional DCs from the lamina propria (LP). The DCs efficiently phagocytosed the bacteria using intraepithelial dendrites. Noninvasive bacteria were similarly sampled. In contrast, CD103+ DCs sampled soluble luminal antigen inefficiently. In mice harboring CD103+ DCs, antigen-specific CD8 T cells were subsequently activated in MLNs. Intestinal CD103+ DCs are therefore equipped with unique mechanisms to independently complete the processes of uptake, transportation, and presentation of bacterial antigens.


Subject(s)
Antigen Presentation/immunology , Antigens, Bacterial/immunology , Antigens, CD/immunology , Dendritic Cells/immunology , Integrin alpha Chains/immunology , Intestinal Mucosa/immunology , Animals , Antigens, CD/metabolism , CD11c Antigen/genetics , CD11c Antigen/immunology , CD11c Antigen/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CX3C Chemokine Receptor 1 , Cell Line, Tumor , Cell Movement/immunology , Cells, Cultured , Dendritic Cells/metabolism , Flow Cytometry , Host-Pathogen Interactions/immunology , Integrin alpha Chains/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence, Multiphoton , Mucous Membrane/immunology , Mucous Membrane/metabolism , Mucous Membrane/microbiology , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , Receptors, Chemokine/metabolism , Salmonella typhi/immunology , Salmonella typhi/physiology , Salmonella typhimurium/immunology , Salmonella typhimurium/physiology , Toll-Like Receptors/immunology , Toll-Like Receptors/metabolism
14.
Immunity ; 38(3): 555-69, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23477737

ABSTRACT

Monocyte-derived macrophages are essential for recovery after spinal cord injury, but their homing mechanism is poorly understood. Here, we show that although of common origin, the homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages to traumatized spinal cord (SC) was distinctly regulated, neither being through breached blood-brain barrier. The M1 macrophages (Ly6c(hi)CX3CR1(lo)) derived from monocytes homed in a CCL2 chemokine-dependent manner through the adjacent SC leptomeninges. The resolving M2 macrophages (Ly6c(lo)CX3CR1(hi)) derived from monocytes trafficked through a remote blood-cerebrospinal-fluid (CSF) barrier, the brain-ventricular choroid plexus (CP), via VCAM-1-VLA-4 adhesion molecules and epithelial CD73 enzyme for extravasation and epithelial transmigration. Blockage of these determinants, or mechanical CSF flow obstruction, inhibited M2 macrophage recruitment and impaired motor-function recovery. The CP, along with the CSF and the central canal, provided an anti-inflammatory supporting milieu, potentially priming the trafficking monocytes. Overall, our finding demonstrates that the route of monocyte entry to central nervous system provides an instructional environment to shape their function.


Subject(s)
Choroid Plexus/immunology , Macrophages/immunology , Spinal Cord Injuries/immunology , Spinal Cord/immunology , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/genetics , 5'-Nucleotidase/immunology , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/pharmacology , Animals , Antigens, Ly/immunology , Antigens, Ly/metabolism , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , CX3C Chemokine Receptor 1 , Cell Movement/genetics , Cell Movement/immunology , Choroid Plexus/metabolism , Enzyme Inhibitors/pharmacology , Flow Cytometry , Gene Expression/immunology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Integrin alpha4beta1/genetics , Integrin alpha4beta1/immunology , Leukocyte Common Antigens/immunology , Leukocyte Common Antigens/metabolism , Macrophages/drug effects , Macrophages/metabolism , Meninges/immunology , Meninges/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/metabolism , Spinal Cord Injuries/cerebrospinal fluid , Spinal Cord Injuries/genetics , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/immunology
15.
Immunity ; 38(1): 79-91, 2013 Jan 24.
Article in English | MEDLINE | ID: mdl-23273845

ABSTRACT

Mononuclear phagocytes, including monocytes, macrophages, and dendritic cells, contribute to tissue integrity as well as to innate and adaptive immune defense. Emerging evidence for labor division indicates that manipulation of these cells could bear therapeutic potential. However, specific ontogenies of individual populations and the overall functional organization of this cellular network are not well defined. Here we report a fate-mapping study of the murine monocyte and macrophage compartment taking advantage of constitutive and conditional CX(3)CR1 promoter-driven Cre recombinase expression. We have demonstrated that major tissue-resident macrophage populations, including liver Kupffer cells and lung alveolar, splenic, and peritoneal macrophages, are established prior to birth and maintain themselves subsequently during adulthood independent of replenishment by blood monocytes. Furthermore, we have established that short-lived Ly6C(+) monocytes constitute obligatory steady-state precursors of blood-resident Ly6C(-) cells and that the abundance of Ly6C(+) blood monocytes dynamically controls the circulation lifespan of their progeny.


Subject(s)
Macrophages/metabolism , Monocytes/metabolism , Animals , Antigens, Ly/metabolism , CX3C Chemokine Receptor 1 , Homeostasis/immunology , Immunophenotyping , Macrophages/immunology , Mice , Mice, Transgenic , Monocytes/immunology , Myeloid Progenitor Cells/metabolism , Receptors, Chemokine/metabolism
16.
Rev Med Virol ; 31(5): 1-14, 2021 09.
Article in English | MEDLINE | ID: mdl-33378601

ABSTRACT

Viruses are postulated as primary candidate triggers of islet autoimmunity (IA) and type 1 diabetes (T1D), based on considerable epidemiological and experimental evidence. Recent studies have investigated the association between all viruses (the 'virome') and IA/T1D using metagenomic next-generation sequencing (mNGS). Current associations between the early life virome and the development of IA/T1D were analysed in a systematic review and meta-analysis of human observational studies from Medline and EMBASE (published 2000-June 2020), without language restriction. Inclusion criteria were as follows: cohort and case-control studies examining the virome using mNGS in clinical specimens of children ≤18 years who developed IA/T1D. The National Health and Medical Research Council level of evidence scale and Newcastle-Ottawa scale were used for study appraisal. Meta-analysis for exposure to specific viruses was performed using random-effects models, and the strength of association was measured using odds ratios (ORs) and 95% confidence intervals (CIs). Eligible studies (one case-control, nine nested case-control) included 1,425 participants (695 cases, 730 controls) and examined IA (n = 1,023) or T1D (n = 402). Meta-analysis identified small but significant associations between IA and number of stool samples positive for all enteroviruses (OR 1.14, 95% CI 1.00-1.29, p = 0.05; heterogeneity χ2  = 1.51, p = 0.68, I2  = 0%), consecutive positivity for enteroviruses (1.55, 1.09-2.20, p = 0.01; χ2  = 0.19, p = 0.91, I2  = 0%) and number of stool samples positive specifically for enterovirus B (1.20, 1.01-1.42, p = 0.04; χ2  = 0.03, p = 0.86, I2  = 0%). Virome analyses to date have demonstrated associations between enteroviruses and IA that may be clinically significant. However, larger prospective mNGS studies with more frequent sampling and follow-up from pregnancy are required to further elucidate associations between early virus exposure and IA/T1D.


Subject(s)
Autoimmunity , Diabetes Mellitus, Type 1 , Virome/genetics , Child , Diabetes Mellitus, Type 1/genetics , High-Throughput Nucleotide Sequencing , Humans , Infant , Prospective Studies
18.
Gastric Cancer ; 24(4): 844-857, 2021 07.
Article in English | MEDLINE | ID: mdl-33598811

ABSTRACT

BACKGROUND: Inactivation of TP53, a tumor suppressor gene, is associated with the development of several malignancies, including gastric cancer (GC). The present study aimed to evaluate the correlation between the overexpression of p53 and survival in different Lauren-type GCs. METHODS: From May 2003 to December 2019, 3608 GC patients treated endoscopically or surgically at the Seoul National University Bundang Hospital were enrolled for the study. Immunohistochemical staining for p53 was performed on all endoscopic and surgical gastric specimens. Clinicopathologic characteristics with Lauren classification, survival rate, and cancer recurrence were analyzed according to p53 overexpression. RESULTS: Among 3608 GC patients, p53 overexpression was seen in 1334 patients (37%). p53 overexpression was associated with lower depth of invasion (P = 0.026) and Early gastric cancer (P = 0.044) in intestinal-type GC, and with advanced TNM stage (P < 0.001) and Advanced gastric cancer (P < 0.001) in diffuse-type GC. The overall survival (OS) and GC-specific survival (GCSS) were significantly lower in p53 overexpression positive patients. This significance was more pronounced and enhanced in the diffuse-type GC and was absent in the intestinal-type GC. In multivariate analyses, p53 overexpression was associated with poor OS in both subtypes of GC and cancer recurrence in diffuse-type GC. (OS in intestinal-type: adjusted hazard ratio [aHR] = 1.423, P = 0.022; OS in diffuse-type: aHR = 1.401 P = 0.035; cancer recurrence in diffuse-type: aHR = 1.502, P = 0.039). CONCLUSION: p53 overexpression was associated with poor prognosis in GC, especially in diffuse-type. In addition, p53 overexpression was associated with early stage disease in intestinal-type GC and with advanced stage disease in diffuse-type GC.


Subject(s)
Stomach Neoplasms/genetics , Stomach Neoplasms/mortality , Tumor Suppressor Protein p53/metabolism , Adult , Aged , Aged, 80 and over , Female , Gastrectomy/mortality , Gene Expression/genetics , Humans , Male , Middle Aged , Neoplasm Staging/classification , Prognosis , Retrospective Studies , Stomach Neoplasms/classification , Survival Rate , Young Adult
19.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502038

ABSTRACT

BACKGROUND: Rural/remote blood collection can cause delays in processing, reducing PBMC number, viability, cell composition and function. To mitigate these impacts, blood was stored at 4 °C prior to processing. Viable cell number, viability, immune phenotype, and Interferon-γ (IFN-γ) release were measured. Furthermore, the lowest protective volume of cryopreservation media and cell concentration was investigated. METHODS: Blood from 10 individuals was stored for up to 10 days. Flow cytometry and IFN-γ ELISPOT were used to measure immune phenotype and function on thawed PBMC. Additionally, PBMC were cryopreserved in volumes ranging from 500 µL to 25 µL and concentration from 10 × 106 cells/mL to 1.67 × 106 cells/mL. RESULTS: PBMC viability and viable cell number significantly reduced over time compared with samples processed immediately, except when stored for 24 h at RT. Monocytes and NK cells significantly reduced over time regardless of storage temperature. Samples with >24 h of RT storage had an increased proportion in Low-Density Neutrophils and T cells compared with samples stored at 4 °C. IFN-γ release was reduced after 24 h of storage, however not in samples stored at 4 °C for >24 h. The lowest protective volume identified was 150 µL with the lowest density of 6.67 × 106 cells/mL. CONCLUSION: A sample delay of 24 h at RT does not impact the viability and total viable cell numbers. When long-term delays exist (>4 d) total viable cell number and cell viability losses are reduced in samples stored at 4 °C. Immune phenotype and function are slightly altered after 24 h of storage, further impacts of storage are reduced in samples stored at 4 °C.


Subject(s)
Blood Preservation/methods , Cryopreservation/methods , Monocytes/immunology , Adult , Blood Preservation/standards , Cryopreservation/standards , Humans , Immunophenotyping , Interferon-gamma/metabolism , Monocytes/cytology
20.
Circ Res ; 123(10): 1127-1142, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30359200

ABSTRACT

RATIONALE: Monocyte infiltration into the subintimal space and its intracellular lipid accumulation are the most prominent features of atherosclerosis. To understand the pathophysiology of atherosclerotic disease, we need to understand the characteristics of lipid-laden foamy macrophages in the subintimal space during atherosclerosis. OBJECTIVE: We sought to examine the transcriptomic profiles of foamy and nonfoamy macrophages isolated from atherosclerotic intima. METHODS AND RESULTS: Single-cell RNA sequencing analysis of CD45+ leukocytes from murine atherosclerotic aorta revealed that there are macrophage subpopulations with distinct differentially expressed genes involved in various functional pathways. To specifically characterize the intimal foamy macrophages of plaque, we developed a lipid staining-based flow cytometric method for analyzing the lipid-laden foam cells of atherosclerotic aortas. We used the fluorescent lipid probe BODIPY493/503 and assessed side-scattered light as an indication of cellular granularity. BODIPYhiSSChi foamy macrophages were found residing in intima and expressing CD11c. Foamy macrophage accumulation determined by flow cytometry was positively correlated with the severity of atherosclerosis. Bulk RNA sequencing analysis showed that compared with nonfoamy macrophages, foamy macrophages expressed few inflammatory genes but many lipid-processing genes. Intimal nonfoamy macrophages formed the major population expressing IL (interleukin)-1ß and many other inflammatory transcripts in atherosclerotic aorta. CONCLUSIONS: RNA sequencing analysis of intimal macrophages from atherosclerotic aorta revealed that lipid-loaded plaque macrophages are not likely the plaque macrophages that drive lesional inflammation.


Subject(s)
Macrophages/metabolism , Plaque, Atherosclerotic/metabolism , Transcriptome , Animals , Aorta/metabolism , Aorta/pathology , Cells, Cultured , Humans , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Plaque, Atherosclerotic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL