Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Circ Res ; 132(1): 52-71, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36448450

ABSTRACT

BACKGROUND: The osteochondrogenic switch of vascular smooth muscle cells (VSMCs) is a pivotal cellular process in atherosclerotic calcification. However, the exact molecular mechanism of the osteochondrogenic transition of VSMCs remains to be elucidated. Here, we explore the regulatory role of TXNIP (thioredoxin-interacting protein) in the phenotypical transitioning of VSMCs toward osteochondrogenic cells responsible for atherosclerotic calcification. METHODS: The atherosclerotic phenotypes of Txnip-/- mice were analyzed in combination with single-cell RNA-sequencing. The atherosclerotic phenotypes of Tagln-Cre; Txnipflox/flox mice (smooth muscle cell-specific Txnip ablation model), and the mice transplanted with the bone marrow of Txnip-/- mice were analyzed. Public single-cell RNA-sequencing dataset (GSE159677) was reanalyzed to define the gene expression of TXNIP in human calcified atherosclerotic plaques. The effect of TXNIP suppression on the osteochondrogenic phenotypic changes in primary aortic VSMCs was analyzed. RESULTS: Atherosclerotic lesions of Txnip-/- mice presented significantly increased calcification and deposition of collagen content. Subsequent single-cell RNA-sequencing analysis identified the modulated VSMC and osteochondrogenic clusters, which were VSMC-derived populations. The osteochondrogenic cluster was markedly expanded in Txnip-/- mice. The pathway analysis of the VSMC-derived cells revealed enrichment of bone- and cartilage-formation-related pathways and bone morphogenetic protein signaling in Txnip-/- mice. Reanalyzing public single-cell RNA-sequencing dataset revealed that TXNIP was downregulated in the modulated VSMC and osteochondrogenic clusters of human calcified atherosclerotic lesions. Tagln-Cre; Txnipflox/flox mice recapitulated the calcification and collagen-rich atherosclerotic phenotypes of Txnip-/- mice, whereas the hematopoietic deficiency of TXNIP did not affect the lesion phenotype. Suppression of TXNIP in cultured VSMCs accelerates osteodifferentiation and upregulates bone morphogenetic protein signaling. Treatment with the bone morphogenetic protein signaling inhibitor K02288 abrogated the effect of TXNIP suppression on osteodifferentiation. CONCLUSIONS: Our results suggest that TXNIP is a novel regulator of atherosclerotic calcification by suppressing bone morphogenetic protein signaling to inhibit the transition of VSMCs toward an osteochondrogenic phenotype.


Subject(s)
Atherosclerosis , Calcinosis , Plaque, Atherosclerotic , Vascular Calcification , Mice , Humans , Animals , Muscle, Smooth, Vascular/metabolism , Cells, Cultured , Atherosclerosis/metabolism , Plaque, Atherosclerotic/pathology , Calcinosis/metabolism , Bone Morphogenetic Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , RNA/metabolism , Vascular Calcification/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Thioredoxins/metabolism
2.
Cell Mol Immunol ; 20(1): 94-109, 2023 01.
Article in English | MEDLINE | ID: mdl-36513810

ABSTRACT

Monocyte/macrophage lineage cells are highly plastic and can differentiate into various cells under different environmental stimuli. Bone-resorbing osteoclasts are derived from the monocyte/macrophage lineage in response to receptor activator of NF-κB ligand (RANKL). However, the epigenetic signature contributing to the fate commitment of monocyte/macrophage lineage differentiation into human osteoclasts is largely unknown. In this study, we identified RANKL-responsive human osteoclast-specific superenhancers (SEs) and SE-associated enhancer RNAs (SE-eRNAs) by integrating data obtained from ChIP-seq, ATAC-seq, nuclear RNA-seq and PRO-seq analyses. RANKL induced the formation of 200 SEs, which are large clusters of enhancers, while suppressing 148 SEs in macrophages. RANKL-responsive SEs were strongly correlated with genes in the osteoclastogenic program and were selectively increased in human osteoclasts but marginally presented in osteoblasts, CD4+ T cells, and CD34+ cells. In addition to the major transcription factors identified in osteoclasts, we found that BATF binding motifs were highly enriched in RANKL-responsive SEs. The depletion of BATF1/3 inhibited RANKL-induced osteoclast differentiation. Furthermore, we found increased chromatin accessibility in SE regions, where RNA polymerase II was significantly recruited to induce the extragenic transcription of SE-eRNAs, in human osteoclasts. Knocking down SE-eRNAs in the vicinity of the NFATc1 gene diminished the expression of NFATc1, a major regulator of osteoclasts, and osteoclast differentiation. Inhibiting BET proteins suppressed the formation of some RANKL-responsive SEs and NFATc1-associated SEs, and the expression of SE-eRNA:NFATc1. Moreover, SE-eRNA:NFATc1 was highly expressed in the synovial macrophages of rheumatoid arthritis patients exhibiting high-osteoclastogenic potential. Our genome-wide analysis revealed RANKL-inducible SEs and SE-eRNAs as osteoclast-specific signatures, which may contribute to the development of osteoclast-specific therapeutic interventions.


Subject(s)
Bone Marrow Cells , Osteoclasts , RANK Ligand , Humans , Bone Marrow Cells/metabolism , Cell Differentiation , Epigenesis, Genetic , Macrophages/metabolism , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , RANK Ligand/genetics , RANK Ligand/metabolism
3.
Nat Commun ; 13(1): 5461, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115863

ABSTRACT

Valvular inflammation triggered by hyperlipidemia has been considered as an important initial process of aortic valve disease; however, cellular and molecular evidence remains unclear. Here, we assess the relationship between plasma lipids and valvular inflammation, and identify association of low-density lipoprotein with increased valvular lipid and macrophage accumulation. Single-cell RNA sequencing analysis reveals the cellular heterogeneity of leukocytes, valvular interstitial cells, and valvular endothelial cells, and their phenotypic changes during hyperlipidemia leading to recruitment of monocyte-derived MHC-IIhi macrophages. Interestingly, we find activated PPARγ pathway in Cd36+ valvular endothelial cells increased in hyperlipidemic mice, and the conservation of PPARγ activation in non-calcified human aortic valves. While the PPARγ inhibition promotes inflammation, PPARγ activation using pioglitazone reduces valvular inflammation in hyperlipidemic mice. These results show that low-density lipoprotein is the main lipoprotein accumulated in the aortic valve during hyperlipidemia, leading to early-stage aortic valve disease, and PPARγ activation protects the aortic valve against inflammation.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Hyperlipidemias , Animals , Aortic Valve/metabolism , Calcinosis/genetics , Cells, Cultured , Endothelial Cells/metabolism , Humans , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Immunomodulation , Inflammation/genetics , Inflammation/metabolism , Lipoproteins, LDL/metabolism , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Pioglitazone/pharmacology , Transcriptome
4.
Cell Mol Gastroenterol Hepatol ; 12(2): 715-739, 2021.
Article in English | MEDLINE | ID: mdl-33894424

ABSTRACT

BACKGROUND & AIMS: Helicobacter pylori has been reported to modulate local immune responses to colonize persistently in gastric mucosa. Although the induced expression of programmed cell death ligand 1 (PD-L1) has been suggested as an immune modulatory mechanism for persistent infection of H pylori, the main immune cells expressing PD-L1 and their functions in Helicobacter-induced gastritis still remain to be elucidated. METHODS: The blockades of PD-L1 with antibody or PD-L1-deficient bone marrow transplantation were performed in Helicobacter-infected mice. The main immune cells expressing PD-L1 in Helicobacter-infected stomach were determined by flow cytometry and immunofluorescence staining. Helicobacter felis or H pylori-infected dendritic cell (DC)-deficient mouse models including Flt3-/-, Zbtb46-diphtheria toxin receptor, and BDCA2-diphtheria toxin receptor mice were analyzed for pathologic changes and colonization levels. Finally, the location of PD-L1-expressing DCs and the correlation with H pylori infection were analyzed in human gastric tissues using multiplexed immunohistochemistry. RESULTS: Genetic or antibody-mediated blockade of PD-L1 aggravated Helicobacter-induced gastritis with mucosal metaplasia. Gastric classical DCs expressed considerably higher levels of PD-L1 than other immune cells and co-localized with T cells in gastritis lesions from Helicobacter-infected mice and human beings. H felis- or H pylori-infected Flt3-/- or classical DC-depleted mice showed aggravated gastritis with severe T-cell and neutrophil accumulation with low bacterial loads compared with that in control mice. Finally, PD-L1-expressing DCs were co-localized with T cells and showed a positive correlation with H pylori infection in human subjects. CONCLUSIONS: The PD-1/PD-L1 pathway may be responsible for the immune modulatory function of gastric DCs that protects the gastric mucosa from Helicobacter-induced inflammation, but allows persistent Helicobacter colonization.


Subject(s)
B7-H1 Antigen/metabolism , Dendritic Cells/metabolism , Gastritis/metabolism , Gastritis/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori/physiology , Animals , Antibodies/pharmacology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , CD11 Antigens/metabolism , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Gastritis/pathology , Helicobacter Infections/pathology , Helicobacter pylori/drug effects , Inflammation/pathology , Male , Metaplasia , Mice, Inbred C57BL , T-Lymphocytes/immunology , fms-Like Tyrosine Kinase 3/deficiency , fms-Like Tyrosine Kinase 3/metabolism
5.
Lab Anim Res ; 35: 22, 2019.
Article in English | MEDLINE | ID: mdl-32257910

ABSTRACT

Pulmonary hypertension (PH) is a pathological state with sustained elevation of pulmonary artery (PA) pressure. Since the pathogenesis of PH is mostly irreversible, the disease often comes up with poor prognosis. Pulmonary arterioles are affected by deteriorative changes, such as development of occlusive lesions of thickening of arterial walls. Such processes increase the pulmonary arterial pressure thus lead to consequent injuries such as right ventricle failure. Proliferation, or resistance to apoptosis of pulmonary artery smooth muscle cells (PASMC) and fibroblasts, are characteristic changes observed in the PA in pulmonary arterial hypertension (PAH) patients. PAH can either occur idiopathically or come with other diseases. Emerging evidences suggest that pro-inflammatory processes are closely related to the development of PAH. Therefore, it is inferred that immune cells could be the key factors in PAH development. In this review, we summarize the way how each types of immune cells participate in PAH. We would also like to list the current rodent models used for PAH study.

SELECTION OF CITATIONS
SEARCH DETAIL