Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Virol ; 94(22)2020 10 27.
Article in English | MEDLINE | ID: mdl-32900822

ABSTRACT

Animal models recapitulating human COVID-19 disease, especially severe disease, are urgently needed to understand pathogenesis and to evaluate candidate vaccines and therapeutics. Here, we develop novel severe-disease animal models for COVID-19 involving disruption of adaptive immunity in Syrian hamsters. Cyclophosphamide (CyP) immunosuppressed or RAG2 knockout (KO) hamsters were exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the respiratory route. Both the CyP-treated and RAG2 KO hamsters developed clinical signs of disease that were more severe than those in immunocompetent hamsters, notably weight loss, viral loads, and fatality (RAG2 KO only). Disease was prolonged in transiently immunosuppressed hamsters and was uniformly lethal in RAG2 KO hamsters. We evaluated the protective efficacy of a neutralizing monoclonal antibody and found that pretreatment, even in immunosuppressed animals, limited infection. Our results suggest that functional B and/or T cells are not only important for the clearance of SARS-CoV-2 but also play an early role in protection from acute disease.IMPORTANCE Syrian hamsters are in use as a model of disease caused by SARS-CoV-2. Pathology is pronounced in the upper and lower respiratory tract, and disease signs and endpoints include weight loss and viral RNA and/or infectious virus in swabs and organs (e.g., lungs). However, a high dose of virus is needed to produce disease, and the disease resolves rapidly. Here, we demonstrate that immunosuppressed hamsters are susceptible to low doses of virus and develop more severe and prolonged disease. We demonstrate the efficacy of a novel neutralizing monoclonal antibody using the cyclophosphamide transient suppression model. Furthermore, we demonstrate that RAG2 knockout hamsters develop severe/fatal disease when exposed to SARS-CoV-2. These immunosuppressed hamster models provide researchers with new tools for evaluating therapies and vaccines and understanding COVID-19 pathogenesis.


Subject(s)
Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Models, Animal , Mesocricetus , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Adaptive Immunity , Animals , Animals, Genetically Modified , Betacoronavirus/physiology , COVID-19 , Cyclophosphamide , DNA-Binding Proteins/genetics , Gene Knockout Techniques , Immunosuppressive Agents , Pandemics , SARS-CoV-2 , Severity of Illness Index
2.
Elife ; 122023 03 27.
Article in English | MEDLINE | ID: mdl-36971354

ABSTRACT

Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.


Subject(s)
Communicable Diseases , Hantaan virus , Hantavirus Infections , Orthohantavirus , Animals , Humans , Antibodies, Neutralizing , Antibodies, Viral , Hantavirus Infections/prevention & control , Rodentia
3.
J Comp Pathol ; 197: 40-43, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36089295

ABSTRACT

Primary intraocular tumours are infrequent in birds. A 2-year-old male Lady Gouldian finch (Erythrura gouldiae) originally presented to the referring veterinarian after the owner noticed mild swelling of the right eye. After the eye had enlarged rapidly and bulged from the orbit, the bird was seen at the referral hospital. Enucleation was attempted but the bird died after sedation. The eye was removed and, on sectioning, a mass was seen primarily in the vitreous chamber with extension through the sclera to the retrobulbar area. After routine histology, immunohistochemistry and electron microscopy, the mass was diagnosed as an embryonal tumour of probable retinal origin. This type of tumour has rarely been documented in birds and we could find no references to any report in Estrildidae.


Subject(s)
Finches , Neoplasms, Germ Cell and Embryonal , Neoplasms , Animals , Humans , Male , Neoplasms/veterinary , Neoplasms, Germ Cell and Embryonal/veterinary
4.
Animals (Basel) ; 12(13)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35804529

ABSTRACT

A novel sublineage of the piscine novirhabdovirus (synonym: viral hemorrhagic septicemia virus), genotype IVb, emerged in the Laurentian Great Lakes, causing serious losses in resident fish species as early as 2003. Experimentally infected juvenile muskellunge (Esox masquinongy) were challenged with VHSV-IVb at high (1 × 105 PFU mL-1), medium (4 × 103 PFU mL-1), and low (100 PFU mL-1) doses. Samples from spleen, kidneys, heart, liver, gills, pectoral fin, large intestine, and skin/muscle were collected simultaneously from four fish at each predetermined time point and processed for VHSV-IVb reisolaton on Epitheliosum papulosum cyprini cell lines and quantification by plaque assay. The earliest reisolation of VHSV-IVb occurred in one fish from pectoral fin samples at 24 h post-infection. By 6 days post-infection (dpi), all tissue types were positive for VHSV-IVb. Statistical analysis suggested that virus levels were highest in liver, heart, and skin/muscle samples. In contrast, the kidneys and spleen exhibited reduced probability of virus recovery. Virus distribution was further confirmed by an in situ hybridization assay using a VHSV-IVb specific riboprobe. Heart muscle fibers, hepatocytes, endothelia, smooth muscle cells, and fibroblast-like cells of the pectoral fin demonstrated riboprobe labeling, thus highlighting the broad cellular tropism of VHSV-IVb. Histopathologic lesions were observed in areas where the virus was visualized.

5.
Vaccines (Basel) ; 10(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35891268

ABSTRACT

To combat the COVID-19 pandemic, an assortment of vaccines has been developed. Nucleic acid vaccines have the advantage of rapid production, as they only require a viral antigen sequence and can readily be modified to detected viral mutations. Doggybone™ DNA vaccines targeting the spike protein of SARS-CoV-2 have been generated and compared with a traditionally manufactured, bacterially derived plasmid DNA vaccine that utilizes the same spike sequence. Administered to Syrian hamsters by jet injection at two dose levels, the immunogenicity of both DNA vaccines was compared following two vaccinations. Immunized hamsters were then immunosuppressed and exposed to SARS-CoV-2. Significant differences in body weight were observed during acute infection, and lungs collected at the time of euthanasia had significantly reduced viral RNA, infectious virus, and pathology compared with irrelevant DNA-vaccinated controls. Moreover, immune serum from vaccinated animals was capable of neutralizing SARS-CoV-2 variants of interest and importance in vitro. These data demonstrate the efficacy of a synthetic DNA vaccine approach to protect hamsters from SARS-CoV-2.

6.
NPJ Vaccines ; 6(1): 16, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33495468

ABSTRACT

A worldwide effort to counter the COVID-19 pandemic has resulted in hundreds of candidate vaccines moving through various stages of research and development, including several vaccines in phase 1, 2 and 3 clinical trials. A relatively small number of these vaccines have been evaluated in SARS-CoV-2 disease models, and fewer in a severe disease model. Here, a SARS-CoV-2 DNA targeting the spike protein and delivered by jet injection, nCoV-S(JET), elicited neutralizing antibodies in hamsters and was protective in both wild-type and transiently immunosuppressed hamster models. This study highlights the DNA vaccine, nCoV-S(JET), we developed has a great potential to move to next stage of preclinical studies, and it also demonstrates that the transiently-immunosuppressed Syrian hamsters, which recapitulate severe and prolonged COVID-19 disease, can be used for preclinical evaluation of the protective efficacy of spike-based COVID-19 vaccines.

7.
Adv Wound Care (New Rochelle) ; 8(1): 14-27, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30705786

ABSTRACT

Objective: To better understand Acinetobacter baumannii pathogenesis and to advance drug discovery against this pathogen, we developed a porcine, full-thickness, excisional, monospecies infection wound model. Approach: The research was facilitated with AB5075, a previously characterized, extensively drug-resistant A. baumannii isolate. The model requires cyclophosphamide-induced neutropenia to establish a skin and soft tissue infection (SSTI) that persists beyond 7 days. Multiple, 12-mm-diameter full-thickness wounds were created in the skin overlying the cervical and thoracic dorsum. Wound beds were inoculated with 5.0 × 104 colony-forming units (CFU) and covered with dressing. Results: A. baumannii was observed in the wound bed and on the dressing in what appeared to be biofilm. When bacterial burdens were measured, proliferation to at least 106 CFU/g (log106) wound tissue was observed. Infection was further characterized by scanning electron microscopy (SEM) and peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) staining. To validate as a treatment model, polymyxin B was applied topically to a subset of infected wounds every 2 days. Then, the treated and untreated wounds were compared using multiple quantitative and qualitative techniques to include gross pathology, CFU burden, histopathology, PNA-FISH, and SEM. Innovation: This is the first study to use A. baumannii in a porcine model as the sole infectious agent. Conclusion: The porcine model allows for an additional preclinical assessment of antibacterial candidates that show promise against A. baumannii in rodent models, further evaluating safety and efficacy, and serve as a large animal in preclinical assessment for the treatment of SSTI.

8.
PLoS One ; 13(10): e0205526, 2018.
Article in English | MEDLINE | ID: mdl-30304066

ABSTRACT

Staphylococcal extracellular polymeric substances (EPS) such as extracellular DNA (eDNA) and poly-N-acetylglucosamine surface polysaccharide (PNAG) mediate numerous virulence traits including host colonization and antimicrobial resistance. Previous studies showed that EPS-degrading enzymes increase staphylococcal biocide susceptibility in vitro and in vivo, and decrease virulence in animal models. In the present study we tested the effect of EPS-degrading enzymes on staphylococcal skin colonization and povidone iodine susceptibility using a novel in vivo pig model that enabled us to colonize and treat 96 isolated areas of skin on a single animal in vivo. To quantitate skin colonization, punch biopsies of colonized areas were homogenized, diluted, and plated on agar for colony forming unit enumeration. Skin was colonized with either Staphylococcus epidermidis or Staphylococcus aureus. Two EPS-degrading enzymes, DNase I and the PNAG-degrading enzyme dispersin B, were employed. Enzymes were tested for their ability to inhibit skin colonization and detach preattached bacteria. The effect of enzymes on the susceptibility of preattached S. aureus to killing by povidone iodine was also measured. We found that dispersin B significantly inhibited skin colonization by S. epidermidis and detached preattached S. epidermidis cells from skin. A cocktail of dispersin B and DNase I detached preattached S. aureus cells from skin and increased their susceptibility to killing by povidone iodine. These findings suggest that staphylococcal EPS components such as eDNA and PNAG contribute to skin colonization and biocide resistance in vivo. EPS-degrading enzymes may be a useful adjunct to conventional skin antisepsis procedures in order to further reduce skin bioburden.


Subject(s)
Anti-Bacterial Agents/pharmacology , Extracellular Polymeric Substance Matrix/drug effects , Povidone-Iodine/pharmacology , Staphylococcal Skin Infections/drug therapy , Staphylococcus aureus , Staphylococcus epidermidis , Animals , Bacterial Adhesion/drug effects , Bacterial Adhesion/physiology , Deoxyribonuclease I/pharmacology , Disease Models, Animal , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/physiology , Extracellular Polymeric Substance Matrix/enzymology , Female , Humans , Recombinant Proteins/pharmacology , Staphylococcal Skin Infections/enzymology , Staphylococcal Skin Infections/pathology , Sus scrofa
9.
J Virol Methods ; 189(1): 129-42, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23375747

ABSTRACT

Viral Hemorrhagic Septicemia virus (VHSv) causes one of the world's most important finfish diseases, killing >80 species across Eurasia and North America. A new and especially virulent strain (IVb) emerged in the North American Great Lakes in 2003, threatening fisheries, baitfish, and aquaculture industries. Weeks-long and costly cell culture is the OIE and USDA-APHIS approved diagnostic. A new Standardized Reverse Transcriptase Polymerase Chain Reaction (StaRT-PCR) assay that uniquely incorporates internal standards to improve accuracy and prevent false negatives was developed and evaluated for its ability to detect and quantify VHSv. Results from StaRT-PCR, SYBR(®) green real time qRT-PCR, and cell culture were compared, as well as the effects of potential PCR inhibitors (EDTA and high RNA). Findings show that StaRT-PCR is sensitive, detecting a single molecule, with 100% accuracy at six molecules, and had no false negatives. In comparison, false negatives ranged from 14 to 47% in SYBR(®) green real time qRT-PCR tests, and 47-70% with cell culture. StaRT-PCR uniquely controlled for EDTA and RNA interference. Range of VHSv quantitation by StaRT-PCR was 1.0×10(0)-1.2×10(5) VHSv/10(6)actb1 molecules in wild caught fishes and 1.0×10(0)-8.4×10(5) molecules in laboratory challenged specimens. In the latter experiments, muskellunge with skin lesions had significantly more viral molecules (mean=1.9×10(4)) than those without (1.1×10(3)) (p<0.04). VHSv infection was detected earlier in injection than in immersion challenged yellow perch (two versus three days), with molecule numbers in both being comparable and relatively consistent over the remaining course of the experiment. Our results show that the StaRT-PCR test accurately and reliably detects and quantifies VHSv.


Subject(s)
Esocidae/virology , Fish Diseases/diagnosis , Novirhabdovirus/isolation & purification , Perches/virology , Rhabdoviridae Infections/veterinary , Animals , Base Sequence , Benzothiazoles , Cell Line , Diamines , False Negative Reactions , Fish Diseases/virology , Molecular Sequence Data , Novirhabdovirus/genetics , Organic Chemicals , Quality Control , Quinolines , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction , Rhabdoviridae Infections/diagnosis
10.
J Microbiol ; 50(2): 278-84, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22538657

ABSTRACT

Previous experimental infection demonstrated that juvenile muskellunge (Esox masquinongy) can survive experimental infection of viral hemorrhagic septicemia virus, Genotype IVb (VHSV IVb) at a low concentration of exposure. Herein we report that survivors of experimental infection with VHSV IVb shed the virus into the surrounding environment for an extended period of time. When muskellunge were exposed to VHSV IVb by immersion at a concentration of 1,400 plaque forming units (PFU)/ml, VHSV IVb was detected in the water of surviving fish for up to 15 weeks postexposure (p.e.) with the highest levels of shedding occurring between weeks 1 and 5 p.e. We estimated that each juvenile muskellunge can shed upwards of 1.36×10(5) PFU/fish/h after initial exposure signifying the uptake and amplification of VHSV to several orders of magnitude above the original exposure concentration. Muskellunge surviving low concentration exposure were re-infected with VHSV IVb by immersion at week 22 p.e. at concentrations ranging from 0 to 10(6) PFU/ml. Viral shedding was detected in all re-exposed fish, including mock rechallenged controls up to 15 consecutive weeks. Rates of viral shedding were substantially higher following rechallenge in the first 5 weeks. The highest rate of viral shedding was approximately 4.6×10(6) PFU/fish/h and shedding did not necessarily correspond to the re-exposure VHSV concentration. The results of this study shed new light into the dynamics of VHSV IVb shedding in a highly susceptible host and provide useful insights to fishery managers to design effective control strategies to this deadly virus.


Subject(s)
Hemorrhagic Septicemia, Viral/virology , Novirhabdovirus/physiology , Virus Shedding , Animals , Esocidae , Genotype , Novirhabdovirus/classification , Novirhabdovirus/genetics , Novirhabdovirus/isolation & purification
11.
Viruses ; 4(5): 734-60, 2012 05.
Article in English | MEDLINE | ID: mdl-22754647

ABSTRACT

In 2003, viral hemorrhagic septicemia virus (VHSV) emerged in the Laurentian Great Lakes causing serious losses in a number of ecologically and recreationally important fish species. Within six years, despite concerted managerial preventive measures, the virus spread into the five Great Lakes and to a number of inland waterbodies. In response to this emerging threat, cooperative efforts between the Michigan Department of Natural Resources (MI DNR), the Michigan State University Aquatic Animal Health Laboratory (MSU-AAHL), and the United States Department of Agriculture-Animal and Plant Health Inspection Services (USDA-APHIS) were focused on performing a series of general and VHSV-targeted surveillances to determine the extent of virus trafficking in the State of Michigan. Herein we describe six years (2005-2010) of testing, covering hundreds of sites throughout Michigan's Upper and Lower Peninsulas. A total of 96,228 fish representing 73 species were checked for lesions suggestive of VHSV and their internal organs tested for the presence of VHSV using susceptible cell lines. Of the 1,823 cases tested, 30 cases from 19 fish species tested positive for VHSV by tissue culture and were confirmed by reverse transcriptase polymerase chain reaction (RT-PCR). Gene sequence analyses of all VHSV isolates retrieved in Michigan demonstrated that they belong to the emerging sublineage "b" of the North American VHSV genotype IV. These findings underscore the complexity of VHSV ecology in the Great Lakes basin and the critical need for rigorous legislation and regulatory guidelines in order to reduce the virus spread within and outside of the Laurentian Great Lakes watershed.


Subject(s)
Fish Diseases/epidemiology , Fish Diseases/virology , Novirhabdovirus/classification , Novirhabdovirus/genetics , Rhabdoviridae Infections/veterinary , Animal Structures/pathology , Animal Structures/virology , Animals , Cluster Analysis , Fish Diseases/pathology , Fishes , Genotype , Michigan/epidemiology , Novirhabdovirus/isolation & purification , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Rhabdoviridae Infections/epidemiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL