Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Physiol Endocrinol Metab ; 307(12): E1097-104, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25336524

ABSTRACT

Skeletal muscle microvascular blood flow (MBF) increases in response to physiological hyperinsulinemia. This vascular action of insulin may facilitate glucose uptake. We hypothesized that epoxyeicosatrienoic acids (EETs), a family of arachadonic, acid-derived, endothelium-derived hyperpolarizing factors, are mediators of insulin's microvascular effects. Contrast-enhanced ultrasound (CEU) was performed to quantify skeletal muscle capillary blood volume (CBV) and MBF in wild-type and obese insulin-resistant (db/db) mice after administration of vehicle or trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid (t-AUCB), an inhibitor of soluble epoxide hydrolase that converts EETs to less active dihydroxyeicosatrienoic acids. Similar studies were performed in rats pretreated with l-NAME. CEU was also performed in rats undergoing a euglycemic hyperinsulinemic clamp, half of which were pretreated with the epoxygenase inhibitor MS-PPOH to inhibit EET synthesis. In both wild-type and db/db mice, intravenous t-AUCB produced an increase in CBV (65-100% increase at 30 min, P < 0.05) and in MBF. In db/db mice, t-AUCB also reduced plasma glucose by ∼15%. In rats pretreated with l-NAME, t-AUCB after produced a significant ≈20% increase in CBV, indicating a component of vascular response independent of nitric oxide (NO) production. Hyperinsulinemic clamp produced a time-dependent increase in MBF (19 ± 36 and 76 ± 49% at 90 min, P = 0.026) that was mediated in part by an increase in CBV. Insulin-mediated changes in both CBV and MBF during the clamp were blocked entirely by MS-PPOH. We conclude that EETs are a mediator of insulin-mediated augmentation in skeletal muscle perfusion and are involved in regulating changes in CBV during hyperinsulinemia.


Subject(s)
8,11,14-Eicosatrienoic Acid/metabolism , Insulin/pharmacology , Muscle, Skeletal/blood supply , Muscle, Skeletal/metabolism , 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors , Animals , Benzoates/pharmacology , Blood Volume/drug effects , Epoxide Hydrolases/antagonists & inhibitors , Hyperinsulinism/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microcirculation/drug effects , Muscle, Skeletal/drug effects , Rats , Rats, Sprague-Dawley , Regional Blood Flow/drug effects , Urea/analogs & derivatives , Urea/pharmacology
2.
Article in English | MEDLINE | ID: mdl-25834183

ABSTRACT

BACKGROUND: Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. METHODS AND RESULTS: Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. CONCLUSIONS: Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase.


Subject(s)
Femoral Artery/diagnostic imaging , Hindlimb/blood supply , Hindlimb/diagnostic imaging , Ischemia/diagnostic imaging , Ischemia/physiopathology , Microbubbles , Muscle, Skeletal/diagnostic imaging , Animals , Dilatation, Pathologic , Endothelium, Vascular/physiopathology , Femoral Artery/pathology , Male , Mice, Inbred C57BL , Myocardial Perfusion Imaging , Regional Blood Flow , Ultrasonography
3.
J Am Soc Echocardiogr ; 27(2): 192-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24315764

ABSTRACT

BACKGROUND: Small animal models of ischemic left ventricular (LV) dysfunction are important for the preclinical optimization of stem cell therapy. The aim of this study was to test the hypothesis that temporal changes in LV function and regional perfusion after cell therapy can be assessed in mice using echocardiographic imaging. METHODS: Wild-type mice (n = 25) were studied 7 and 28 days after permanent ligation of the left anterior descending coronary artery. Animals were randomized to receive closed-chest ultrasound-guided intramyocardial delivery of saline (n = 13) or 5 × 10(5) multipotential adult progenitor cells (MAPCs; n = 12) on day 7. LV end-diastolic and end-systolic volumes, LV ejection fraction, and stroke volume were measured using high-frequency echocardiography. Multiplanar assessments of perfusion and defect area size were made using myocardial contrast echocardiography. RESULTS: Between days 7 and 28, MAPC-treated animals had 40% to 50% reductions in defect size (P < .001) and 20% to 30% increases in total perfusion (P < .01). Perfusion did not change in nontreated controls. Both LV end-diastolic and end-systolic volumes increased between days 7 and 28 in both groups, but LV end-systolic volume increased to a lesser degree in MAPC-treated compared with control mice (+4.2 ± 7.9 vs +19.2 ± 22.0 µL, P < .05). LV ejection fraction increased in the MAPC-treated mice and decreased in control mice (+3.0 ± 4.3% vs -5.6 ± 5.9%, P < .01). There was a significant linear relation between the change in LV ejection fraction and the change in either defect area size or total perfusion. CONCLUSIONS: High-frequency echocardiography and myocardial contrast echocardiography in murine models of ischemic LV dysfunction can be used to assess the response to stem cell therapy and to characterize the relationship among spatial flow, ventricular function, and ventricular remodeling.


Subject(s)
Echocardiography , Myocardial Ischemia/diagnostic imaging , Myocardial Ischemia/therapy , Stem Cell Transplantation , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/therapy , Animals , Disease Models, Animal , Mice , Mice, Nude , Multipotent Stem Cells/transplantation , Myocardial Ischemia/complications , Myocardial Perfusion Imaging/methods , Random Allocation , Rats , Ventricular Dysfunction, Left/etiology , Ventricular Remodeling
4.
J Am Soc Echocardiogr ; 26(12): 1474-81, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24035699

ABSTRACT

BACKGROUND: The etiology of flank pain sometimes experienced during the administration of ultrasound contrast agents is unknown. The aim of this study was to investigate whether microbubble ultrasound contrast agents are retained within the renal microcirculation, which could lead to either flow disturbance or local release of vasoactive and pain mediators downstream from complement activation. METHODS: Retention of lipid-shelled microbubbles in the renal microcirculation of mice was assessed by confocal fluorescent microscopy and contrast-enhanced ultrasound imaging with dose-escalating intravenous injection. Studies were performed with size-segregated microbubbles to investigate physical entrapment, after glycocalyx degradation and in wild-type and C3-deficient mice to investigate complement-mediated retention. Urinary bradykinin was measured before and after microbubble administrations. Renal contrast-enhanced ultrasound in human subjects (n = 13) was performed 7 to 10 min after the completion of lipid microbubble administration. RESULTS: In both mice and humans, microbubble retention was detected in the renal cortex by persistent contrast-enhanced ultrasound signal enhancement. Microbubble retention in mice was linearly related to dose and occurred almost exclusively in cortical glomerular microvessels. Microbubble retention did not affect microsphere-derived renal blood flow. Microbubble retention was not influenced by glycocalyx degradation or by microbubble size, thereby excluding lodging, but was reduced by 90% (P < .01) in C3-deficient mice. Urinary bradykinin increased by 65% 5 min after microbubble injection. CONCLUSIONS: Lipid-shelled microbubbles are retained in the renal cortex because of complement-mediated interactions with glomerular microvascular endothelium. Microbubble retention does not adversely affect renal perfusion but does generate complement-related intermediates that are known to mediate nociception and could be responsible for flank pain.


Subject(s)
Contrast Media/pharmacokinetics , Flank Pain/chemically induced , Fluorocarbons/adverse effects , Fluorocarbons/pharmacokinetics , Kidney/diagnostic imaging , Kidney/metabolism , Ultrasonography/adverse effects , Animals , Contrast Media/adverse effects , Feasibility Studies , Flank Pain/diagnosis , Humans , Male , Metabolic Clearance Rate , Mice , Mice, Inbred C57BL , Renal Circulation , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL