Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Bioorg Med Chem Lett ; 27(21): 4881-4884, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28947152

ABSTRACT

Vitamin K is an essential cofactor of γ-glutamylcarboxylase as related to blood coagulation and bone formation. Menaquinone-4, one of the vitamin K homologues, is biosynthesized in the body and has various biological activities such as being a ligand for steroid and xenobiotic receptors, protection of neuronal cells from oxidative stress, and so on. From this background, we focused on the role of menaquinone in the differentiation activity of progenitor cells into neuronal cells and we synthesized novel vitamin K derivatives with modification of the ω-terminal side chain. We report here new vitamin K analogues, which introduced an alkylated phenyl group at the ω-terminal side chain. These compounds exhibited potent differentiation activity as compared to control.


Subject(s)
Vitamin K/analogs & derivatives , Alkylation , Animals , Cell Differentiation/drug effects , Cells, Cultured , Mice , Microscopy, Fluorescence , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , PC12 Cells , Rats , Structure-Activity Relationship , Vitamin K/chemical synthesis , Vitamin K/pharmacology
2.
Cell Rep Med ; 4(5): 101020, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37080205

ABSTRACT

The excitatory glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) contribute to epileptogenesis. Thirty patients with epilepsy and 31 healthy controls are scanned using positron emission tomography with our recently developed radiotracer for AMPARs, [11C]K-2, which measures the density of cell-surface AMPARs. In patients with focal-onset seizures, an increase in AMPAR trafficking augments the amplitude of abnormal gamma activity detected by electroencephalography. In contrast, patients with generalized-onset seizures exhibit a decrease in AMPARs coupled with increased amplitude of abnormal gamma activity. Patients with epilepsy had reduced AMPAR levels compared with healthy controls, and AMPARs are reduced in larger areas of the cortex in patients with generalized-onset seizures compared with those with focal-onset seizures. Thus, epileptic brain function can be regulated by the enhanced trafficking of AMPAR due to Hebbian plasticity with increased simultaneous neuronal firing and compensational downregulation of cell-surface AMPARs by the synaptic scaling.


Subject(s)
Epilepsy , Receptors, AMPA , Humans , Receptors, AMPA/physiology , Neurons , Seizures
3.
Nucl Med Biol ; 110-111: 47-58, 2022.
Article in English | MEDLINE | ID: mdl-35642985

ABSTRACT

INTRODUCTION: AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor) receptors play a central role in neurotransmission and neuronal function. A positron emission tomography (PET) tracer for AMPA receptors, [11C]K-2, was recently developed by us to visualize AMPA receptors in the living human brain. [11C]K-2 is a derivative of 4-[2-(phenylsulphonylamino)ethylthio]-2,6-difuluoro-phenoxyacetamide (PEPA), and is labeled with the radioactive isotope 11C, which has a short half-life. PET drugs are usually labeled with 18F because of its long half-life. Therefore, we screened and identified potential 18F-labeled PET drugs for AMPA receptors (AMPA-PET drugs), which could provide an image equivalent to that of [11C]K-2. METHODS: Derivatives of K-2 labeled with 18F were synthesized and administered to rats and PET imaging was performed. The transferability of each compound to the brain and its correlation with the PET image of [11C]K-2 were evaluated from the obtained PET images. Furthermore, the specific binding ability of promising compounds to the AMPA receptor was evaluated by the PET imaging of rats, which we specifically knocked down the expression of AMPA by the lentivirus-mediated introduction of short hairpin RNA (shRNA) targeted to subunits of the AMPA receptor (GluA1-A3). The specific binding ability was also evaluated through electrophysiological experiments with acute brain slices. RESULTS: Some of the synthesized 18F-labeled candidate compounds showed a distribution similar to that of K-2, with reasonable transferability to the brain. In addition, from the evaluation of the specific binding ability to the AMPA receptor, a promising structure of an 18F-labeled AMPA PET drug was identified. This study also revealed that the alkylation of the sulfonamide group of PEPA enhances brain transferability.


Subject(s)
Fluorine , Receptors, AMPA , Animals , Brain/diagnostic imaging , Brain/metabolism , Fluorine/metabolism , Fluorine Radioisotopes/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Rats , Receptors, AMPA/metabolism , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
4.
Nat Med ; 26(2): 281-288, 2020 02.
Article in English | MEDLINE | ID: mdl-31959988

ABSTRACT

Although aberrations in the number and function of glutamate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors are thought to underlie neuropsychiatric disorders, no methods are currently available for visualizing AMPA receptors in the living human brain. Here we developed a positron emission tomography (PET) tracer for AMPA receptors. A derivative of 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetamide radiolabeled with 11C ([11C]K-2) showed specific binding to AMPA receptors. Our clinical trial with healthy human participants confirmed reversible binding of [11C]K-2 in the brain according to Logan graphical analysis (UMIN000020975; study design: non-randomized, single arm; primary outcome: dynamics and distribution volumes of [11C]K-2 in the brain; secondary outcome: adverse events of [11C]K-2 during the 4-10 d following dosing; this trial met prespecified endpoints). In an exploratory clinical study including patients with epilepsy, we detected increased [11C]K-2 uptake in the epileptogenic focus of patients with mesial temporal lobe epilepsy, which was closely correlated with the local AMPA receptor protein distribution in surgical specimens from the same individuals (UMIN000025090; study design: non-randomized, single arm; primary outcome: correlation between [11C]K-2 uptake measured with PET before surgery and AMPA receptor protein density examined by biochemical study after surgery; secondary outcome: adverse events during the 7 d following PET scan; this trial met prespecified endpoints). Thus, [11C]K-2 is a potent PET tracer for AMPA receptors, potentially providing a tool to examine the involvement of AMPA receptors in neuropsychiatric disorders.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Carbon Radioisotopes/chemistry , Phenoxyacetates/pharmacokinetics , Receptors, AMPA/metabolism , Adult , Animals , Chromatography, Liquid , Female , Healthy Volunteers , Humans , Male , Positron-Emission Tomography , Protein Binding , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry , Tomography, Emission-Computed, Single-Photon , Treatment Outcome , Young Adult
5.
J Med Chem ; 60(6): 2591-2596, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28225275

ABSTRACT

We synthesized novel vitamin K2 analogues that incorporated a heteroatom and an aromatic ring in the side chain and evaluated their effect on the selective differentiation of neuronal progenitor cells into neurons in vitro. The results showed that a menaquinone-2 analogue bearing a p-fluoroaniline had the most potent activity, which was more than twice as great as the control. In addition, the neuronal selectivity was more than 3 times greater than the control.


Subject(s)
Neural Stem Cells/drug effects , Neurogenesis/drug effects , Vitamin K/analogs & derivatives , Vitamin K/pharmacology , Vitamins/chemistry , Vitamins/pharmacology , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Animals , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Neural Stem Cells/cytology , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry , Vitamin K 2/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL