Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 75(2): 267-283.e12, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31202576

ABSTRACT

How spatial chromosome organization influences genome integrity is still poorly understood. Here, we show that DNA double-strand breaks (DSBs) mediated by topoisomerase 2 (TOP2) activities are enriched at chromatin loop anchors with high transcriptional activity. Recurrent DSBs occur at CCCTC-binding factor (CTCF) and cohesin-bound sites at the bases of chromatin loops, and their frequency positively correlates with transcriptional output and directionality. The physiological relevance of this preferential positioning is indicated by the finding that genes recurrently translocating to drive leukemias are highly transcribed and are enriched at loop anchors. These genes accumulate DSBs at recurrent hotspots that give rise to chromosomal fusions relying on the activity of both TOP2 isoforms and on transcriptional elongation. We propose that transcription and 3D chromosome folding jointly pose a threat to genomic stability and are key contributors to the occurrence of genome rearrangements that drive cancer.


Subject(s)
DNA Topoisomerases, Type II/genetics , Genomic Instability/genetics , Histone-Lysine N-Methyltransferase/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Poly-ADP-Ribose Binding Proteins/genetics , Translocation, Genetic/genetics , CCCTC-Binding Factor/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Chromatin/chemistry , Chromatin/genetics , Chromosomes/chemistry , Chromosomes/genetics , DNA/genetics , DNA Breaks, Double-Stranded , Humans , Leukemia/genetics , Leukemia/pathology
2.
Gut ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857989

ABSTRACT

OBJECTIVE: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with limited therapeutic options. KRAS mutations are among the most abundant genetic alterations in iCCA associated with poor clinical outcome and treatment response. Recent findings indicate that Poly(ADP-ribose)polymerase1 (PARP-1) is implicated in KRAS-driven cancers, but its exact role in cholangiocarcinogenesis remains undefined. DESIGN: PARP-1 inhibition was performed in patient-derived and established iCCA cells using RNAi, CRISPR/Cas9 and pharmacological inhibition in KRAS-mutant, non-mutant cells. In addition, Parp-1 knockout mice were combined with iCCA induction by hydrodynamic tail vein injection to evaluate an impact on phenotypic and molecular features of Kras-driven and Kras-wildtype iCCA. Clinical implications were confirmed in authentic human iCCA. RESULTS: PARP-1 was significantly enhanced in KRAS-mutant human iCCA. PARP-1-based interventions preferentially impaired cell viability and tumourigenicity in human KRAS-mutant cell lines. Consistently, loss of Parp-1 provoked distinct phenotype in Kras/Tp53-induced versus Akt/Nicd-induced iCCA and abolished Kras-dependent cholangiocarcinogenesis. Transcriptome analyses confirmed preferential impairment of DNA damage response pathways and replicative stress response mediated by CHK1. Consistently, inhibition of CHK1 effectively reversed PARP-1 mediated effects. Finally, Parp-1 depletion induced molecular switch of KRAS-mutant iCCA recapitulating good prognostic human iCCA patients. CONCLUSION: Our findings identify the novel prognostic and therapeutic role of PARP-1 in iCCA patients with activation of oncogenic KRAS signalling.

3.
Eur J Epidemiol ; 38(5): 573-586, 2023 May.
Article in English | MEDLINE | ID: mdl-37017830

ABSTRACT

Treatment concepts in oncology are becoming increasingly personalized and diverse. Successively, changes in standards of care mandate continuous monitoring of patient pathways and clinical outcomes based on large, representative real-world data. The German Cancer Consortium's (DKTK) Clinical Communication Platform (CCP) provides such opportunity. Connecting fourteen university hospital-based cancer centers, the CCP relies on a federated IT-infrastructure sourcing data from facility-based cancer registry units and biobanks. Federated analyses resulted in a cohort of 600,915 patients, out of which 232,991 were incident since 2013 and for which a comprehensive documentation is available. Next to demographic data (i.e., age at diagnosis: 2.0% 0-20 years, 8.3% 21-40 years, 30.9% 41-60 years, 50.1% 61-80 years, 8.8% 81+ years; and gender: 45.2% female, 54.7% male, 0.1% other) and diagnoses (five most frequent tumor origins: 22,523 prostate, 18,409 breast, 15,575 lung, 13,964 skin/malignant melanoma, 9005 brain), the cohort dataset contains information about therapeutic interventions and response assessments and is connected to 287,883 liquid and tissue biosamples. Focusing on diagnoses and therapy-sequences, showcase analyses of diagnosis-specific sub-cohorts (pancreas, larynx, kidney, thyroid gland) demonstrate the analytical opportunities offered by the cohort's data. Due to its data granularity and size, the cohort is a potential catalyst for translational cancer research. It provides rapid access to comprehensive patient groups and may improve the understanding of the clinical course of various (even rare) malignancies. Therefore, the cohort may serve as a decisions-making tool for clinical trial design and contributes to the evaluation of scientific findings under real-world conditions.


Subject(s)
Neoplasms , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Young Adult , Neoplasms/diagnosis , Neoplasms/epidemiology , Neoplasms/therapy , Middle Aged , Aged , Aged, 80 and over , Cohort Studies
4.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629110

ABSTRACT

Unlike genomic alterations, gene expression profiles have not been widely used to refine cancer therapies. We analyzed transcriptional changes in acute myeloid leukemia (AML) cell lines in response to standard first-line AML drugs cytarabine and daunorubicin by means of RNA sequencing. Those changes were highly cell- and treatment-specific. By comparing the changes unique to treatment-sensitive and treatment-resistant AML cells, we enriched for treatment-relevant genes. Those genes were associated with drug response-specific pathways, including calcium ion-dependent exocytosis and chromatin remodeling. Pharmacological mimicking of those changes using EGFR and MEK inhibitors enhanced the response to daunorubicin with minimum standalone cytotoxicity. The synergistic response was observed even in the cell lines beyond those used for the discovery, including a primary AML sample. Additionally, publicly available cytotoxicity data confirmed the synergistic effect of EGFR inhibitors in combination with daunorubicin in all 60 investigated cancer cell lines. In conclusion, we demonstrate the utility of treatment-evoked gene expression changes to formulate rational drug combinations. This approach could improve the standard AML therapy, especially in older patients.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Aged , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Daunorubicin/pharmacology , Cell Line , Chromatin Assembly and Disassembly , ErbB Receptors
5.
Blood ; 136(21): 2442-2456, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32589720

ABSTRACT

The interaction of menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and provides a potential opportunity for treatment of NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. In this study, transcriptional profiling after pharmacological inhibition of the menin-MLL complex revealed specific changes in gene expression, with downregulation of the MEIS1 transcription factor and its transcriptional target gene FLT3 being the most pronounced. Combining menin-MLL inhibition with specific small-molecule kinase inhibitors of FLT3 phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream of FLT3 signaling. The drug combination induced synergistic inhibition of proliferation, as well as enhanced apoptosis, compared with single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary acute myeloid leukemia (AML) cells harvested from patients with NPM1mutFLT3mut AML showed significantly better responses to combined menin and FLT3 inhibition than to single-drug or vehicle control treatment, whereas AML cells with wild-type NPM1, MLL, and FLT3 were not affected by either of the 2 drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared with results in the single-drug and vehicle control groups. Our data suggest that combined menin-MLL and FLT3 inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gene Expression Regulation, Leukemic/drug effects , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Coculture Techniques , Drug Synergism , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Mice, Inbred NOD , Myeloid Ecotropic Viral Integration Site 1 Protein/biosynthesis , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Nucleophosmin , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Processing, Post-Translational , Random Allocation , Transcription, Genetic/drug effects , fms-Like Tyrosine Kinase 3/biosynthesis , fms-Like Tyrosine Kinase 3/genetics
6.
Blood ; 136(26): 3041-3050, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33367545

ABSTRACT

Monitoring of measurable residual disease (MRD) provides prognostic information in patients with Nucleophosmin1-mutated (NPM1mut) acute myeloid leukemia (AML) and represents a powerful tool to evaluate treatment effects within clinical trials. We determined NPM1mut transcript levels (TLs) by quantitative reverse-transcription polymerase chain reaction and evaluated the prognostic impact of NPM1mut MRD and the effect of gemtuzumab ozogamicin (GO) on NPM1mut TLs and the cumulative incidence of relapse (CIR) in patients with NPM1mut AML enrolled in the randomized phase 3 AMLSG 09-09 trial. A total of 3733 bone marrow (BM) samples and 3793 peripheral blood (PB) samples from 469 patients were analyzed. NPM1mut TL log10 reduction ≥ 3 and achievement of MRD negativity in BM and PB were significantly associated with a lower CIR rate, after 2 treatment cycles and at end of treatment (EOT). In multivariate analyses, MRD positivity was consistently revealed to be a poor prognostic factor in BM and PB. With regard to treatment effect, the median NPM1mut TLs were significantly lower in the GO-Arm across all treatment cycles, resulting in a significantly greater proportion of patients achieving MRD negativity at EOT (56% vs 41%; P = .01). The better reduction in NPM1mut TLs after 2 treatment cycles in MRD positive patients by the addition of GO led to a significantly lower CIR rate (4-year CIR, 29.3% vs 45.7%, P = .009). In conclusion, the addition of GO to intensive chemotherapy in NPM1mut AML resulted in a significantly better reduction in NPM1mut TLs across all treatment cycles, leading to a significantly lower relapse rate.


Subject(s)
Gemtuzumab/administration & dosage , Leukemia, Myeloid, Acute , Mutation , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Adult , Aged , Aged, 80 and over , Bone Marrow , Disease-Free Survival , Female , Gemtuzumab/adverse effects , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Neoplasm, Residual , Nucleophosmin , Prospective Studies , Recurrence , Risk Factors , Survival Rate
7.
Liver Int ; 42(12): 2855-2870, 2022 12.
Article in English | MEDLINE | ID: mdl-35983950

ABSTRACT

Intrahepatic, perihilar, and distal cholangiocarcinoma (iCCA, pCCA, dCCA) are highly malignant tumours with increasing mortality rates due to therapy resistances. Among the mechanisms mediating resistance, overexpression of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL , Mcl-1) is particularly important. In this study, we investigated whether antiapoptotic protein patterns are prognostically relevant and potential therapeutic targets in CCA. Bcl-2 proteins were analysed in a pan-cancer cohort from the NCT/DKFZ/DKTK MASTER registry trial (n = 1140, CCA n = 72) via RNA-sequencing and transcriptome-based protein activity interference revealing high ranks of CCA for Bcl-xL and Mcl-1. Expression of Bcl-xL , Mcl-1, and Bcl-2 was assessed in human CCA tissue and cell lines compared with cholangiocytes by immunohistochemistry, immunoblotting, and quantitative-RT-PCR. Immunohistochemistry confirmed the upregulation of Bcl-xL and Mcl-1 in iCCA tissues. Cell death of CCA cell lines upon treatment with specific small molecule inhibitors of Bcl-xL (Wehi-539), of Mcl-1 (S63845), and Bcl-2 (ABT-199), either alone, in combination with each other or together with chemotherapeutics was assessed by flow cytometry. Targeting Bcl-xL induced cell death and augmented the effect of chemotherapy in CCA cells. Combined inhibition of Bcl-xL and Mcl-1 led to a synergistic increase in cell death in CCA cell lines. Correlation between Bcl-2 protein expression and survival was analysed within three independent patient cohorts from cancer centers in Germany comprising 656 CCA cases indicating a prognostic value of Bcl-xL in CCA depending on the CCA subtype. Collectively, these observations identify Bcl-xL as a key protein in cell death resistance of CCA and may pave the way for clinical application.


Subject(s)
Cholangiocarcinoma , bcl-X Protein , Humans , bcl-X Protein/genetics , bcl-X Protein/metabolism , Bile Duct Neoplasms/diagnosis , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic , Cell Line, Tumor , Cholangiocarcinoma/diagnosis , Cholangiocarcinoma/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Prognosis , Proto-Oncogene Proteins c-bcl-2/genetics
8.
Arch Toxicol ; 96(1): 177-193, 2022 01.
Article in English | MEDLINE | ID: mdl-34665271

ABSTRACT

Acute myeloid leukemia (AML) with mutations in the FMS-like tyrosine kinase (FLT3) is a clinically unresolved problem. AML cells frequently have a dysregulated expression and activity of epigenetic modulators of the histone deacetylase (HDAC) family. Therefore, we tested whether a combined inhibition of mutant FLT3 and class I HDACs is effective against AML cells. Low nanomolar doses of the FLT3 inhibitor (FLT3i) AC220 and an inhibition of class I HDACs with nanomolar concentrations of FK228 or micromolar doses of the HDAC3 specific agent RGFP966 synergistically induce apoptosis of AML cells that carry hyperactive FLT3 with an internal tandem duplication (FLT3-ITD). This does not occur in leukemic cells with wild-type FLT3 and without FLT3, suggesting a preferential toxicity of this combination against cells with mutant FLT3. Moreover, nanomolar doses of the new FLT3i marbotinib combine favorably with FK228 against leukemic cells with FLT3-ITD. The combinatorial treatments potentiated their suppressive effects on the tyrosine phosphorylation and stability of FLT3-ITD and its downstream signaling to the kinases ERK1/ERK2 and the inducible transcription factor STAT5. The beneficial pro-apoptotic effects of FLT3i and HDACi against leukemic cells with mutant FLT3 are associated with dose- and drug-dependent alterations of cell cycle distribution and DNA damage. This is linked to a modulation of the tumor-suppressive transcription factor p53 and its target cyclin-dependent kinase inhibitor p21. While HDACi induce p21, AC220 suppresses the expression of p53 and p21. Furthermore, we show that both FLT3-ITD and class I HDAC activity promote the expression of the checkpoint kinases CHK1 and WEE1, thymidylate synthase, and the DNA repair protein RAD51 in leukemic cells. A genetic depletion of HDAC3 attenuates the expression of such proteins. Thus, class I HDACs and hyperactive FLT3 appear to be valid targets in AML cells with mutant FLT3.


Subject(s)
Leukemia, Myeloid, Acute , Apoptosis , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Histone Deacetylases/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Protein Kinase Inhibitors/pharmacology , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
9.
Int J Cancer ; 149(9): 1670-1682, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34331774

ABSTRACT

Accumulating evidence suggests that both the nature of oncogenic lesions and the cell-of-origin can strongly influence cancer histopathology, tumor aggressiveness and response to therapy. Although oncogenic Kras expression and loss of Trp53 tumor suppressor gene function have been demonstrated to initiate murine lung adenocarcinomas (LUADs) in alveolar type II (AT2) cells, clear evidence that Club cells, representing the second major subset of lung epithelial cells, can also act as cells-of-origin for LUAD is lacking. Equally, the exact anatomic location of Club cells that are susceptible to Kras transformation and the resulting tumor histotype remains to be established. Here, we provide definitive evidence for Club cells as progenitors for LUAD. Using in vivo lineage tracing, we find that a subset of Kras12V -expressing and Trp53-deficient Club cells act as precursors for LUAD and we define the stepwise trajectory of Club cell-initiated tumors leading to lineage marker conversion and aggressive LUAD. Our results establish Club cells as cells-of-origin for LUAD and demonstrate that Club cell-initiated tumors have the potential to develop aggressive LUAD.


Subject(s)
Adenocarcinoma/genetics , Cell Transformation, Neoplastic/genetics , Epithelial Cells/metabolism , Genes, ras/genetics , Lung Neoplasms/genetics , Mutation , Tumor Suppressor Protein p53/genetics , Adenocarcinoma/metabolism , Animals , Cell Transformation, Neoplastic/metabolism , Disease Progression , Epithelial Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , Lung/metabolism , Lung/pathology , Lung Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Tumor Suppressor Protein p53/deficiency
10.
Blood ; 133(21): 2305-2319, 2019 05 23.
Article in English | MEDLINE | ID: mdl-30814062

ABSTRACT

Neural cell adhesion molecule 1 (NCAM1; CD56) is expressed in up to 20% of acute myeloid leukemia (AML) patients. NCAM1 is widely used as a marker of minimal residual disease; however, the biological function of NCAM1 in AML remains elusive. In this study, we investigated the impact of NCAM1 expression on leukemogenesis, drug resistance, and its role as a biomarker to guide therapy. Beside t(8;21) leukemia, NCAM1 expression was found in most molecular AML subgroups at highly heterogeneous expression levels. Using complementary genetic strategies, we demonstrated an essential role of NCAM1 in the regulation of cell survival and stress resistance. Perturbation of NCAM1 induced cell death or differentiation and sensitized leukemic blasts toward genotoxic agents in vitro and in vivo. Furthermore, Ncam1 was highly expressed in leukemic progenitor cells in a murine leukemia model, and genetic depletion of Ncam1 prolonged disease latency and significantly reduced leukemia-initiating cells upon serial transplantation. To further analyze the mechanism of the NCAM1-associated phenotype, we performed phosphoproteomics and transcriptomics in different AML cell lines. NCAM1 expression strongly associated with constitutive activation of the MAPK-signaling pathway, regulation of apoptosis, or glycolysis. Pharmacological inhibition of MEK1/2 specifically inhibited proliferation and sensitized NCAM1+ AML cells to chemotherapy. In summary, our data demonstrate that aberrant expression of NCAM1 is involved in the maintenance of leukemic stem cells and confers stress resistance, likely due to activation of the MAPK pathway. Targeting MEK1/2 sensitizes AML blasts to genotoxic agents, indicating a role for NCAM1 as a biomarker to guide AML treatment.


Subject(s)
Biomarkers, Tumor/metabolism , Blast Crisis/metabolism , CD56 Antigen/metabolism , Drug Resistance, Neoplasm , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/metabolism , Animals , Apoptosis/genetics , Biomarkers, Tumor/genetics , Blast Crisis/genetics , Blast Crisis/pathology , Blast Crisis/therapy , CD56 Antigen/genetics , Female , Glycolysis/genetics , HL-60 Cells , Humans , K562 Cells , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , MAP Kinase Signaling System/genetics , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Neoplasm Proteins/genetics
11.
Blood ; 134(19): 1608-1618, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31554635

ABSTRACT

We performed serial measurable residual disease (MRD) monitoring in bone marrow (BM) and peripheral blood (PB) samples of 155 intensively treated patients with RUNX1-RUNX1T1+ AML, using a qRT-PC-based assay with a sensitivity of up to 10-6. We assessed both reduction of RUNX1-RUNX1T1 transcript levels (TLs) and achievement of MRD negativity (MRD-) for impact on prognosis. Achievement of MR2.5 (>2.5 log reduction) after treatment cycle 1 and achievement of MR3.0 after treatment cycle 2 were significantly associated with a reduced risk of relapse (P = .034 and P = .028, respectively). After completion of therapy, achievement of MRD- in both BM and PB was an independent, favorable prognostic factor in cumulative incidence of relapse (4-year cumulative incidence relapse: BM, 17% vs 36%, P = .021; PB, 23% vs 55%, P = .001) and overall survival (4-year overall survival rate BM, 93% vs 70%, P = .007; PB, 87% vs 47%, P < .0001). Finally, during follow-up, serial qRT-PCR analyses allowed prediction of relapse in 77% of patients exceeding a cutoff value of 150 RUNX1-RUNX1T1 TLs in BM, and in 84% of patients exceeding a value of 50 RUNX1-RUNX1T1 TLs in PB. The KIT mutation was a significant factor predicting a lower CR rate and inferior outcome, but its prognostic impact was outweighed by RUNX1-RUNX1T1 TLs during treatment. Virtually all relapses occurred within 1 year after the end of treatment, with a very short latency from molecular to morphologic relapse, necessitating MRD assessment at short intervals during this time period. Based on our data, we propose a refined practical guideline for MRD assessment in RUNX1-RUNX1T1+ AML.


Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Neoplasm, Residual/diagnosis , Oncogene Proteins, Fusion/analysis , Adolescent , Adult , Aged , Core Binding Factor Alpha 2 Subunit/analysis , Core Binding Factor Alpha 2 Subunit/genetics , Female , Humans , Leukemia, Myeloid, Acute/genetics , Male , Middle Aged , Neoplasm, Residual/genetics , Oncogene Proteins, Fusion/genetics , Prognosis , RUNX1 Translocation Partner 1 Protein/analysis , RUNX1 Translocation Partner 1 Protein/genetics , Real-Time Polymerase Chain Reaction/methods , Translocation, Genetic , Young Adult
12.
Blood ; 133(8): 840-851, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30563875

ABSTRACT

Patients with acute myeloid leukemia (AML) and a FLT3 internal tandem duplication (ITD) have poor outcomes to current treatment. A phase 2 hypothesis-generating trial was conducted to determine whether the addition of the multitargeted kinase inhibitor midostaurin to intensive chemotherapy followed by allogeneic hematopoietic cell transplantation (alloHCT) and single-agent maintenance therapy of 12 months is feasible and favorably influences event-free survival (EFS) compared with historical controls. Patients 18 to 70 years of age with newly diagnosed AML and centrally confirmed FLT3-ITD were eligible: 284 patients were treated, including 198 younger (18-60 years) and 86 older (61-70 years) patients. Complete remission (CR) rate, including CR with incomplete hematological recovery (CRi) after induction therapy, was 76.4% (younger, 75.8%; older, 77.9%). The majority of patients in CR/CRi proceeded to alloHCT (72.4%). Maintenance therapy was started in 97 patients (34%): 75 after alloHCT and 22 after consolidation with high-dose cytarabine (HiDAC). Median time receiving maintenance therapy was 9 months after alloHCT and 10.5 months after HiDAC; premature termination was mainly a result of nonrelapse causes (gastrointestinal toxicity and infections). EFS and overall survival at 2 years were 39% (95% confidence interval [CI], 33%-47%) and 34% (95% CI, 24%-47%) and 53% (95% CI, 46%-61%) and 46% (95% CI, 35%-59%) in younger and older patients, respectively. EFS was evaluated in comparison with 415 historical controls treated within 5 prospective trials. Propensity score-weighted analysis revealed a significant improvement of EFS by midostaurin (hazard ratio [HR], 0.58; 95% CI, 0.48-0.70; P < .001) overall and in older patients (HR, 0.42; 95% CI, 0.29-0.61). The study was registered at www.clinicaltrials.gov as #NCT01477606.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Maintenance Chemotherapy , Staurosporine/analogs & derivatives , fms-Like Tyrosine Kinase 3/genetics , Adolescent , Adult , Aged , Allografts , Disease-Free Survival , Female , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Staurosporine/administration & dosage , Survival Rate
13.
BMC Med Inform Decis Mak ; 21(1): 358, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930224

ABSTRACT

BACKGROUND: Extensive sequencing of tumor tissues has greatly improved our understanding of cancer biology over the past years. The integration of genomic and clinical data is increasingly used to select personalized therapies in dedicated tumor boards (Molecular Tumor Boards) or to identify patients for basket studies. Genomic alterations and clinical information can be stored, integrated and visualized in the open-access resource cBioPortal for Cancer Genomics. cBioPortal can be run as a local instance enabling storage and analysis of patient data in single institutions, in the respect of data privacy. However, uploading clinical input data and genetic aberrations requires the elaboration of multiple data files and specific data formats, which makes it difficult to integrate this system into clinical practice. To solve this problem, we developed cbpManager. RESULTS: cbpManager is an R package providing a web-based interactive graphical user interface intended to facilitate the maintenance of mutations data and clinical data, including patient and sample information, as well as timeline data. cbpManager enables a large spectrum of researchers and physicians, regardless of their informatics skills to intuitively create data files ready for upload in cBioPortal for Cancer Genomics on a daily basis or in batch. Due to its modular structure based on R Shiny, further data formats such as copy number and fusion data can be covered in future versions. Further, we provide cbpManager as a containerized solution, enabling a straightforward large-scale deployment in clinical systems and secure access in combination with ShinyProxy. cbpManager is freely available via the Bioconductor project at https://bioconductor.org/packages/cbpManager/ under the AGPL-3 license. It is already used at six University Hospitals in Germany (Mainz, Gießen, Lübeck, Halle, Freiburg, and Marburg). CONCLUSION: In summary, our package cbpManager is currently a unique software solution in the workflow with cBioPortal for Cancer Genomics, to assist the user in the interactive generation and management of study files suited for the later upload in cBioPortal.


Subject(s)
Genomics , Neoplasms , Humans , Information Storage and Retrieval , Neoplasms/genetics , Software , Workflow
14.
Int J Cancer ; 147(8): 2293-2302, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32468570

ABSTRACT

Immune checkpoint inhibition leads to response in some patients with head and neck squamous cell carcinoma (HNSCC). Robust biomarkers are lacking to date. We analyzed viral status, gene expression signatures, mutational load and mutational signatures in whole exome and RNA-sequencing data of the HNSCC TCGA dataset (n = 496) and a validation set (DKTK MASTER cohort, n = 10). Public single-cell gene expression data from 17 HPV-negative HNSCC were separately reanalyzed. APOBEC3-associated TCW motif mutations but not total single nucleotide variant burden were significantly associated with inflammation. This association was restricted to HPV-negative HNSCC samples. An APOBEC-enriched, HPV-negative subgroup was identified, that showed higher T-cell inflammation and immune checkpoint expression, as well as expression of APOBEC3 genes. Mutations in immune-evasion pathways were also enriched in these tumors. Analysis of single-cell sequencing data identified expression of APOBEC3B and 3C genes in malignant cells. We identified an APOBEC-enriched subgroup of HPV-negative HNSCC with a distinct immunogenic phenotype, potentially mediating response to immunotherapy.


Subject(s)
APOBEC Deaminases/genetics , APOBEC Deaminases/immunology , Head and Neck Neoplasms/immunology , Immune Evasion/genetics , Immune Evasion/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Cohort Studies , Exome/genetics , Exome/immunology , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/immunology , Head and Neck Neoplasms/virology , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/virology , Male , Middle Aged , Mutation/genetics , Papillomaviridae/immunology , Papillomavirus Infections/genetics , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Sequence Analysis, RNA/methods , Squamous Cell Carcinoma of Head and Neck/virology , T-Lymphocytes/immunology , Transcriptome/genetics , Transcriptome/immunology
16.
Blood ; 123(15): 2355-66, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24505083

ABSTRACT

Activating KRAS mutations are detected in a substantial number of hematologic malignancies. In a murine T-cell acute lymphoblastic leukemia (T-ALL) model, we previously showed that expression of oncogenic Kras induced a premalignant state accompanied with an arrest in T-cell differentiation and acquisition of somatic Notch1 mutations. These findings prompted us to investigate whether the expression of oncogenic KRAS directly affects DNA damage repair. Applying divergent, but complementary, genetic approaches, we demonstrate that the expression of KRAS mutants is associated with increased expression of DNA ligase 3α, poly(ADP-ribose) polymerase 1 (PARP1), and X-ray repair cross-complementing protein 1 (XRCC1), all essential components of the error-prone, alternative nonhomologous end-joining (alt-NHEJ) pathway. Functional studies revealed delayed repair kinetics, increased misrepair of DNA double-strand breaks, and the preferential use of microhomologous DNA sequences for end joining. Similar effects were observed in primary murine T-ALL blasts. We further show that KRAS-mutated cells, but not KRAS wild-type cells, rely on the alt-NHEJ repair pathway on genotoxic stress. RNA interference-mediated knockdown of DNA ligase 3α abolished resistance to apoptotic cell death in KRAS-mutated cells. Our data indicate that targeting components of the alt-NHEJ pathway sensitizes KRAS-mutated leukemic cells to standard chemotherapeutics and represents a promising approach for inducing synthetic lethal vulnerability in cells harboring otherwise nondruggable KRAS mutations.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Repair/genetics , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Comet Assay , DNA Breaks, Double-Stranded , DNA Repair/drug effects , Disease Models, Animal , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Transduction, Genetic
17.
Blood ; 124(1): 121-33, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24855208

ABSTRACT

SIRT1 is an important regulator of cellular stress response and genomic integrity. Its role in tumorigenesis is controversial. Whereas sirtuin 1 (SIRT1) can act as a tumor suppressor in some solid tumors, increased expression has been demonstrated in many cancers, including hematologic malignancies. In chronic myeloid leukemia, SIRT1 promoted leukemia development, and targeting SIRT1 sensitized chronic myeloid leukemia progenitors to tyrosine kinase inhibitor treatment. In this study, we investigated the role of SIRT1 in acute myeloid leukemia (AML). We show that SIRT1 protein, but not RNA levels, is overexpressed in AML samples harboring activating mutations in signaling pathways. In FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD)(+)-cells protein, expression of SIRT1 is regulated by FLT3 kinase activity. In addition, SIRT1 function is modulated via the ATM-DBC1-SIRT1 axis in a FLT3-ITD-dependent manner. In murine leukemia models driven by MLL-AF9 or AML1-ETO coexpressing FLT3-ITD, SIRT1 acts as a safeguard to counteract oncogene-induced stress, and leukemic blasts become dependent on SIRT1 activity. Pharmacologic targeting or RNAi-mediated knockdown of SIRT1 inhibited cell growth and sensitized AML cells to tyrosine kinase inhibitor treatment and chemotherapy. This effect was a result of the restoration of p53 activity. Our data suggest that targeting SIRT1 represents an attractive therapeutic strategy to overcome primary resistance in defined subsets of patients with AML.


Subject(s)
DNA Damage/physiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Enzyme Activation/physiology , Gene Knock-In Techniques , Gene Knockdown Techniques , Heterografts , Humans , Mice , Mice, Inbred C57BL , Signal Transduction/physiology , Sirtuin 1/genetics
18.
Blood ; 124(23): 3441-9, 2014 Nov 27.
Article in English | MEDLINE | ID: mdl-25270908

ABSTRACT

The objective was to evaluate the prognostic and predictive impact of allelic ratio and insertion site (IS) of internal tandem duplications (ITDs), as well as concurrent gene mutations, with regard to postremission therapy in 323 patients with FLT3-ITD-positive acute myeloid leukemia (AML). Increasing FLT3-ITD allelic ratio (P = .004) and IS in the tyrosine kinase domain 1 (TKD1, P = .06) were associated with low complete remission (CR) rates. After postremission therapy including intensive chemotherapy (n = 121) or autologous hematopoietic stem cell transplantation (HSCT, n = 17), an allelic ratio ≥ 0.51 was associated with an unfavorable relapse-free (RFS, P = .0008) and overall survival (OS, P = .004); after allogeneic HSCT (n = 93), outcome was significantly improved in patients with a high allelic ratio (RFS, P = .02; OS, P = .03), whereas no benefit was seen in patients with a low allelic ratio (RFS, P = .38; OS, P = .64). Multivariable analyses revealed a high allelic ratio as a predictive factor for the beneficial effect of allogeneic HSCT; ITD IS in TKD1 remained an unfavorable factor, whereas no prognostic impact of concurrent gene mutations was observed. The clinical trials described herein were previously published or are registered as follows: AMLHD93 and AMLHD98A, previously published; AML SG 07-04, ClinicalTrials.gov identifier #NCT00151242.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutagenesis, Insertional/genetics , fms-Like Tyrosine Kinase 3/genetics , Adolescent , Adult , Alleles , DNA Mutational Analysis , Gene Duplication , Gene Frequency , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cell Transplantation/statistics & numerical data , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/mortality , Middle Aged , Protein Structure, Tertiary/genetics , Tandem Repeat Sequences/genetics , Transplantation, Homologous , Treatment Outcome , Young Adult , fms-Like Tyrosine Kinase 3/chemistry
19.
Biochim Biophys Acta ; 1846(1): 121-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24797212

ABSTRACT

Immunodeficiency is a severe side effect of radiation therapy, notably at high radiation doses. It may also impact healthy individuals exposed to environmental ionizing radiation. Although it is believed to result from cytotoxicity of bone marrow cells and of immunocompetent cells in the peripheral blood, the response of distinct bone marrow and blood cell subpopulations following exposure to ionizing radiation is not yet fully explored. In this review, we aim to compile the knowledge on radiation sensitivity of immunocompetent cells and to summarize data from bone marrow and peripheral blood cells derived from mouse and human origin. In addition, we address the radiation response of blood stem and progenitor cells. The data indicate that stem cells, T helper cells, cytotoxic T cells, monocytes, neutrophils and, at a high degree, B cells display a radiation sensitive phenotype while regulatory T cells, macrophages, dendritic cells and natural killer cells appear to be more radioresistant. No conclusive data are available for basophil and eosinophil granulocytes. Erythrocytes and thrombocytes, but not their precursors, seem to be highly radioresistant. Overall, the data indicate considerable differences in radiosensitivity of bone marrow and blood normal and malignant cell populations, which are discussed in the light of differential radiation responses resulting in hematotoxicity and related clinical implications.


Subject(s)
Hematopoietic Stem Cells/physiology , Lymphocytes/radiation effects , Radiation Tolerance , Animals , Cell Survival/radiation effects , DNA Damage , Hematopoietic Stem Cells/radiation effects , Humans , Immunocompetence/radiation effects , Lymphocytes/physiology , Mice , Radioactive Hazard Release
SELECTION OF CITATIONS
SEARCH DETAIL