Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 176(3): 435-447.e15, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30611538

ABSTRACT

Mitochondrial ADP/ATP carriers transport ADP into the mitochondrial matrix for ATP synthesis, and ATP out to fuel the cell, by cycling between cytoplasmic-open and matrix-open states. The structure of the cytoplasmic-open state is known, but it has proved difficult to understand the transport mechanism in the absence of a structure in the matrix-open state. Here, we describe the structure of the matrix-open state locked by bongkrekic acid bound in the ADP/ATP-binding site at the bottom of the central cavity. The cytoplasmic side of the carrier is closed by conserved hydrophobic residues, and a salt bridge network, braced by tyrosines. Glycine and small amino acid residues allow close-packing of helices on the matrix side. Uniquely, the carrier switches between states by rotation of its three domains about a fulcrum provided by the substrate-binding site. Because these features are highly conserved, this mechanism is likely to apply to the whole mitochondrial carrier family. VIDEO ABSTRACT.


Subject(s)
Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial ADP, ATP Translocases/ultrastructure , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Binding Sites , Biological Transport , Bongkrekic Acid/metabolism , Cytoplasm/metabolism , Mitochondria/physiology , Mitochondrial ADP, ATP Translocases/physiology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Membrane Transport Proteins/ultrastructure , Models, Molecular , Protein Conformation , Protein Structure, Secondary , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
2.
EMBO J ; 43(16): 3450-3465, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38937634

ABSTRACT

Members of the SLC25 mitochondrial carrier family link cytosolic and mitochondrial metabolism and support cellular maintenance and growth by transporting compounds across the mitochondrial inner membrane. Their monomeric or dimeric state and kinetic mechanism have been a matter of long-standing debate. It is believed by some that they exist as homodimers and transport substrates with a sequential kinetic mechanism, forming a ternary complex where both exchanged substrates are bound simultaneously. Some studies, in contrast, have provided evidence indicating that the mitochondrial ADP/ATP carrier (SLC25A4) functions as a monomer, has a single substrate binding site, and operates with a ping-pong kinetic mechanism, whereby ADP is imported before ATP is exported. Here we reanalyze the oligomeric state and kinetic properties of the human mitochondrial citrate carrier (SLC25A1), dicarboxylate carrier (SLC25A10), oxoglutarate carrier (SLC25A11), and aspartate/glutamate carrier (SLC25A13), all previously reported to be dimers with a sequential kinetic mechanism. We demonstrate that they are monomers, except for dimeric SLC25A13, and operate with a ping-pong kinetic mechanism in which the substrate import and export steps occur consecutively. These observations are consistent with a common transport mechanism, based on a functional monomer, in which a single central substrate-binding site is alternately accessible.


Subject(s)
Dicarboxylic Acid Transporters , Humans , Kinetics , Dicarboxylic Acid Transporters/metabolism , Dicarboxylic Acid Transporters/genetics , Mitochondria/metabolism , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Protein Multimerization , Amino Acid Transport Systems, Acidic/metabolism , Amino Acid Transport Systems, Acidic/genetics , Anion Transport Proteins/metabolism , Anion Transport Proteins/genetics , Anion Transport Proteins/chemistry , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Antiporters/metabolism , Antiporters/genetics , Antiporters/chemistry , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial ADP, ATP Translocases/genetics , Biological Transport , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/chemistry , Adenosine Triphosphate/metabolism , Carrier Proteins , Membrane Transport Proteins
3.
EMBO Rep ; 24(8): e57127, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37278158

ABSTRACT

The mitochondrial ADP/ATP carrier (SLC25A4), also called the adenine nucleotide translocase, imports ADP into the mitochondrial matrix and exports ATP, which are key steps in oxidative phosphorylation. Historically, the carrier was thought to form a homodimer and to operate by a sequential kinetic mechanism, which involves the formation of a ternary complex with the two exchanged substrates bound simultaneously. However, recent structural and functional data have demonstrated that the mitochondrial ADP/ATP carrier works as a monomer and has a single substrate binding site, which cannot be reconciled with a sequential kinetic mechanism. Here, we study the kinetic properties of the human mitochondrial ADP/ATP carrier by using proteoliposomes and transport robotics. We show that the Km/Vmax ratio is constant for all of the measured internal concentrations. Thus, in contrast to earlier claims, we conclude that the carrier operates with a ping-pong kinetic mechanism in which substrate exchange across the membrane occurs consecutively rather than simultaneously. These data unite the kinetic and structural models, showing that the carrier operates with an alternating access mechanism.


Subject(s)
Mitochondria , Mitochondrial ADP, ATP Translocases , Humans , Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Adenosine Diphosphate/metabolism , Kinetics , Adenine Nucleotide Translocator 1/metabolism
4.
Nature ; 556(7699): 113-117, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29590092

ABSTRACT

The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.


Subject(s)
Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/agonists , NF-E2-Related Factor 2/metabolism , Succinates/metabolism , Alkylation , Animals , Carboxy-Lyases , Cattle , Cysteine/chemistry , Cysteine/metabolism , Cytokines/biosynthesis , Cytokines/immunology , Feedback, Physiological , Female , HEK293 Cells , Humans , Hydro-Lyases/biosynthesis , Interferon-beta/immunology , Interferon-beta/pharmacology , Lipopolysaccharides/immunology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Proteins/metabolism , Rats , Rats, Wistar , Succinates/chemistry
5.
Arch Biochem Biophys ; 742: 109638, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37192692

ABSTRACT

Paratrimastix pyriformis is a free-living flagellate thriving in low-oxygen freshwater sediments. It belongs to the group Metamonada along with human parasites, such as Giardia and Trichomonas. Like other metamonads, P. pyriformis has a mitochondrion-related organelle (MRO) which in this protist is primarily involved in one-carbon folate metabolism. The MRO contains four members of the solute carrier family 25 (SLC25) responsible for the exchange of metabolites across the mitochondrial inner membrane. Here, we characterise the function of the adenine nucleotide carrier PpMC1 by thermostability shift and transport assays. We show that it transports ATP, ADP and, to a lesser extent, AMP, but not phosphate. The carrier is distinct in function and origin from both ADP/ATP carriers and ATP-Mg/phosphate carriers, and it most likely represents a distinct class of adenine nucleotide carriers.


Subject(s)
Parasites , Animals , Humans , Parasites/metabolism , Mitochondria/metabolism , Adenosine Monophosphate/metabolism , Mitochondrial Membranes/metabolism , Adenosine Triphosphate/metabolism
6.
Physiology (Bethesda) ; 35(5): 302-327, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32783608

ABSTRACT

Members of the mitochondrial carrier family (SLC25) transport a variety of compounds across the inner membrane of mitochondria. These transport steps provide building blocks for the cell and link the pathways of the mitochondrial matrix and cytosol. An increasing number of diseases and pathologies has been associated with their dysfunction. In this review, the molecular basis of these diseases is explained based on our current understanding of their transport mechanism.


Subject(s)
Energy Metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Organic Anion Transporters/metabolism , Animals , Biological Transport , Humans , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Mitochondrial Membranes/pathology , Mitochondrial Proteins/genetics , Mutation, Missense , Organic Anion Transporters/genetics
7.
Int J Mol Sci ; 21(23)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255957

ABSTRACT

Cryptosporidiumparvum is a clinically important eukaryotic parasite that causes the disease cryptosporidiosis, which manifests with gastroenteritis-like symptoms. The protist has mitosomes, which are organelles of mitochondrial origin that have only been partially characterized. The genome encodes a highly reduced set of transport proteins of the SLC25 mitochondrial carrier family of unknown function. Here, we have studied the transport properties of one member of the C. parvum carrier family, demonstrating that it resembles the mitochondrial ADP/ATP carrier of eukaryotes. However, this carrier has a broader substrate specificity for nucleotides, transporting adenosine, thymidine, and uridine di- and triphosphates in contrast to its mitochondrial orthologues, which have a strict substrate specificity for ADP and ATP. Inspection of the putative translocation pathway highlights a cysteine residue, which is a serine in mitochondrial ADP/ATP carriers. When the serine residue is replaced by cysteine or larger hydrophobic residues in the yeast mitochondrial ADP/ATP carrier, the substrate specificity becomes broad, showing that this residue is important for nucleotide base selectivity in ADP/ATP carriers.


Subject(s)
Cryptosporidium parvum/metabolism , Cysteine/metabolism , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/metabolism , Nucleotides/metabolism , Protein Translocation Systems/metabolism , Amino Acid Sequence , Atractyloside/analogs & derivatives , Atractyloside/chemistry , Bongkrekic Acid/chemistry , Lactococcus lactis/metabolism , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phylogeny , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity
8.
Am J Hum Genet ; 99(4): 860-876, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27693233

ABSTRACT

Mutations in SLC25A4 encoding the mitochondrial ADP/ATP carrier AAC1 are well-recognized causes of mitochondrial disease. Several heterozygous SLC25A4 mutations cause adult-onset autosomal-dominant progressive external ophthalmoplegia associated with multiple mitochondrial DNA deletions, whereas recessive SLC25A4 mutations cause childhood-onset mitochondrial myopathy and cardiomyopathy. Here, we describe the identification by whole-exome sequencing of seven probands harboring dominant, de novo SLC25A4 mutations. All affected individuals presented at birth, were ventilator dependent and, where tested, revealed severe combined mitochondrial respiratory chain deficiencies associated with a marked loss of mitochondrial DNA copy number in skeletal muscle. Strikingly, an identical c.239G>A (p.Arg80His) mutation was present in four of the seven subjects, and the other three case subjects harbored the same c.703C>G (p.Arg235Gly) mutation. Analysis of skeletal muscle revealed a marked decrease of AAC1 protein levels and loss of respiratory chain complexes containing mitochondrial DNA-encoded subunits. We show that both recombinant AAC1 mutant proteins are severely impaired in ADP/ATP transport, affecting most likely the substrate binding and mechanics of the carrier, respectively. This highly reduced capacity for transport probably affects mitochondrial DNA maintenance and in turn respiration, causing a severe energy crisis. The confirmation of the pathogenicity of these de novo SLC25A4 mutations highlights a third distinct clinical phenotype associated with mutation of this gene and demonstrates that early-onset mitochondrial disease can be caused by recurrent de novo mutations, which has significant implications for the application and analysis of whole-exome sequencing data in mitochondrial disease.


Subject(s)
Adenine Nucleotide Translocator 1/genetics , DNA Copy Number Variations/genetics , DNA, Mitochondrial/genetics , Genes, Dominant/genetics , Mitochondrial Diseases/genetics , Mutation , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Age of Onset , Arylamine N-Acetyltransferase/genetics , Child , Child, Preschool , Electron Transport/genetics , Exome/genetics , Female , Humans , Infant , Infant, Newborn , Isoenzymes/genetics , Male , Mitochondrial Diseases/pathology , Muscle, Skeletal/metabolism
9.
Biochim Biophys Acta Bioenerg ; 1859(1): 1-7, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29031613

ABSTRACT

Missense mutations of the human mitochondrial citrate carrier, encoded by the SLC25A1 gene, lead to an autosomal recessive neurometabolic disorder characterised by neonatal-onset encephalopathy with severe muscular weakness, intractable seizures, respiratory distress, and lack of psychomotor development, often resulting in early death. Here, we have measured the effect of all twelve known pathogenic mutations on the transport activity. The results show that nine mutations abolish transport of citrate completely, whereas the other three reduce the transport rate by >70%, indicating that impaired citrate transport is the most likely primary cause of the disease. Some mutations may be detrimental to the structure of the carrier, whereas others may impair key functional elements, such as the substrate binding site and the salt bridge network on the matrix side of the carrier. To understand the consequences of impaired citrate transport on metabolism, the substrate specificity was also determined, showing that the human citrate carrier predominantly transports citrate, isocitrate, cis-aconitate, phosphoenolpyruvate and malate. Although D-2- and L-2 hydroxyglutaric aciduria is a metabolic hallmark of the disease, it is unlikely that the citrate carrier plays a significant role in the removal of hydroxyglutarate from the cytosol for oxidation to oxoglutarate in the mitochondrial matrix. In contrast, computer simulations of central metabolism predict that the export of citrate from the mitochondrion cannot be fully compensated by other pathways, restricting the cytosolic production of acetyl-CoA that is required for the synthesis of lipids, sterols, dolichols and ubiquinone, which in turn explains the severe disease phenotypes.


Subject(s)
Anion Transport Proteins , Citric Acid/metabolism , Computer Simulation , Dolichols , Mitochondrial Proteins , Models, Biological , Mutation, Missense , Sterols , Ubiquinone , Anion Transport Proteins/chemistry , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Biological Transport, Active/genetics , Brain Diseases, Metabolic, Inborn/enzymology , Brain Diseases, Metabolic, Inborn/genetics , Catalytic Domain , Dolichols/biosynthesis , Dolichols/chemistry , Dolichols/genetics , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Organic Anion Transporters , Sterols/biosynthesis , Sterols/chemistry , Sterols/metabolism , Ubiquinone/biosynthesis , Ubiquinone/chemistry , Ubiquinone/genetics
10.
Genet Med ; 20(10): 1224-1235, 2018 10.
Article in English | MEDLINE | ID: mdl-29517768

ABSTRACT

PURPOSE: To understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease. METHODS: We identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons. RESULTS: The patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis. CONCLUSION: Mitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.


Subject(s)
Adipates/metabolism , DNA, Mitochondrial/genetics , Dicarboxylic Acid Transporters/genetics , Mitochondrial Membrane Transport Proteins/genetics , Muscular Atrophy, Spinal/genetics , Adipates/pharmacology , Apoptosis/drug effects , Cell Line , DNA, Mitochondrial/metabolism , Dicarboxylic Acid Transporters/metabolism , Fibroblasts/drug effects , Homozygote , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Motor Neurons/drug effects , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/physiopathology , Mutation , Pipecolic Acids/metabolism , Quinolinic Acid/metabolism
11.
Proc Natl Acad Sci U S A ; 112(39): 12087-92, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26371297

ABSTRACT

Mitochondrial complex I (proton-pumping NADH:ubiquinone oxidoreductase) is an essential respiratory enzyme. Mammalian complex I contains 45 subunits: 14 conserved "core" subunits and 31 "supernumerary" subunits. The structure of Bos taurus complex I, determined to 5-Å resolution by electron cryomicroscopy, described the structure of the mammalian core enzyme and allowed the assignment of 14 supernumerary subunits. Here, we describe the 6.8-Å resolution X-ray crystallography structure of subcomplex Iß, a large portion of the membrane domain of B. taurus complex I that contains two core subunits and a cohort of supernumerary subunits. By comparing the structures and composition of subcomplex Iß and complex I, supported by comparisons with Yarrowia lipolytica complex I, we propose assignments for eight further supernumerary subunits in the structure. Our new assignments include two CHCH-domain containing subunits that contain disulfide bridges between CX9C motifs; they are processed by the Mia40 oxidative-folding pathway in the intermembrane space and probably stabilize the membrane domain. We also assign subunit B22, an LYR protein, to the matrix face of the membrane domain. We reveal that subunit B22 anchors an acyl carrier protein (ACP) to the complex, replicating the LYR protein-ACP structural module that was identified previously in the hydrophilic domain. Thus, we significantly extend knowledge of how the mammalian supernumerary subunits are arranged around the core enzyme, and provide insights into their roles in biogenesis and regulation.


Subject(s)
Cattle , Electron Transport Complex I/chemistry , Models, Molecular , Protein Subunits/chemistry , Animals , Cryoelectron Microscopy , Protein Conformation , Yarrowia
12.
Biophys J ; 113(11): 2311-2315, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29056231

ABSTRACT

Biophysical investigation of membrane proteins generally requires their extraction from native sources using detergents, a step that can lead, possibly irreversibly, to protein denaturation. The propensity of dodecylphosphocholine (DPC), a detergent widely utilized in NMR studies of membrane proteins, to distort their structure has been the subject of much controversy. It has been recently proposed that the binding specificity of the yeast mitochondrial ADP/ATP carrier (yAAC3) toward cardiolipins is preserved in DPC, thereby suggesting that DPC is a suitable environment in which to study membrane proteins. In this communication, we used all-atom molecular dynamics simulations to investigate the specific binding of cardiolipins to yAAC3. Our data demonstrate that the interaction interface observed in a native-like environment differs markedly from that inferred from an NMR investigation in DPC, implying that in this detergent, the protein structure is distorted. We further investigated yAAC3 solubilized in DPC and in the milder dodecylmaltoside with thermal-shift assays. The loss of thermal transition observed in DPC confirms that the protein is no longer properly folded in this environment.


Subject(s)
Cardiolipins/metabolism , Mitochondria/enzymology , Mitochondrial ADP, ATP Translocases/metabolism , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Protein Binding/drug effects
13.
Biochim Biophys Acta Bioenerg ; 1858(11): 906-914, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28554566

ABSTRACT

The mitochondrial ADP/ATP carrier catalyses the equimolar exchange of adenosine di- and tri-phosphates. It operates by an alternating access mechanism in which a single substrate-binding site is made available either to the mitochondrial matrix or the intermembrane space through conformational changes. These changes are prevented in the absence of substrate by a large energy barrier due to the need for sequential disruption and formation of a matrix and cytoplasmic salt bridge network that are located on either side of the central cavity. In analogy to enzyme catalysis, substrate lowers the energy barrier by binding tighter in the intermediate state. Here we provide an in-silico kinetic model that captures the free energy profile of these conformational changes and treats the carrier as a nanomachine moving stochastically from the matrix to cytoplasmic conformation under the influence of thermal energy. The model reproduces the dependency of experimentally determined kcat and KM values on the cytoplasmic network strength with good quantitative accuracy, implying that it captures the transport mechanism and can provide a framework to understand the structure-function relationships of this class of transporter. The results show that maximum transport occurs when the interaction energies of the cytoplasmic network, matrix network and substrate binding are approximately equal such that the energy barrier is minimized. Consequently, the model predicts that there will be other interactions in addition to those of the cytoplasmic network that stabilise the matrix conformation of the ADP/ATP carrier.


Subject(s)
Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Fungal Proteins/chemistry , Mitochondrial ADP, ATP Translocases/chemistry , Saccharomycetales/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Cloning, Molecular , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression , Kinetics , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Mitochondria/chemistry , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial ADP, ATP Translocases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomycetales/enzymology , Thermodynamics
14.
Biochim Biophys Acta ; 1857(1): 14-22, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26453935

ABSTRACT

Mitochondrial ADP/ATP carriers catalyze the equimolar exchange of ADP and ATP across the mitochondrial inner membrane. Structurally, they consist of three homologous domains with a single substrate binding site. They alternate between a cytoplasmic and matrix state in which the binding site is accessible to these compartments for binding of ADP or ATP. It has been proposed that cycling between states occurs by disruption and formation of a matrix and cytoplasmic salt bridge network in an alternating way, but formation of the latter has not been shown experimentally. Here, we show that state-dependent formation of the cytoplasmic salt bridge network can be demonstrated by measuring the effect of mutations on the thermal stability of detergent-solubilized carriers locked in a specific state. For this purpose, mutations were made to increase or decrease the overall interaction energy of the cytoplasmic network. When locked in the cytoplasmic state by the inhibitor carboxyatractyloside, the thermostabilities of the mutant and wild-type carriers were similar, but when locked in the matrix state by the inhibitor bongkrekic acid, they correlated with the predicted interaction energy of the cytoplasmic network, demonstrating its formation. Changing the interaction energy of the cytoplasmic network also had a profound effect on the kinetics of transport, indicating that formation of the network is a key step in the transport cycle. These results are consistent with a unique alternating access mechanism that involves the simultaneous rotation of the three domains around a central translocation pathway.


Subject(s)
Cytoplasm/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Biological Transport , Kinetics , Mitochondrial ADP, ATP Translocases/chemistry , Protein Folding
15.
Biochim Biophys Acta ; 1863(10): 2379-93, 2016 10.
Article in English | MEDLINE | ID: mdl-27001633

ABSTRACT

The mitochondrial ADP/ATP carrier imports ADP from the cytosol and exports ATP from the mitochondrial matrix, which are key transport steps for oxidative phosphorylation in eukaryotic organisms. The transport protein belongs to the mitochondrial carrier family, a large transporter family in the inner membrane of mitochondria. It is one of the best studied members of the family and serves as a paradigm for the molecular mechanism of mitochondrial carriers. Structurally, the carrier consists of three homologous domains, each composed of two transmembrane α-helices linked with a loop and short α-helix on the matrix side. The transporter cycles between a cytoplasmic and matrix state in which a central substrate binding site is alternately accessible to these compartments for binding of ADP or ATP. On both the cytoplasmic and matrix side of the carrier are networks consisting of three salt bridges each. In the cytoplasmic state, the matrix salt bridge network is formed and the cytoplasmic network is disrupted, opening the central substrate binding site to the intermembrane space and cytosol, whereas the converse occurs in the matrix state. In the transport cycle, tighter substrate binding in the intermediate states allows the interconversion of conformations by lowering the energy barrier for disruption and formation of these networks, opening and closing the carrier to either side of the membrane in an alternating way. Conversion between cytoplasmic and matrix states might require the simultaneous rotation of three domains around a central translocation pathway, constituting a unique mechanism among transport proteins. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial Membranes/metabolism , Amino Acid Sequence , Animals , Biological Transport, Active , Bongkrekic Acid/pharmacology , Cardiolipins/metabolism , Cattle , Consensus Sequence , Humans , Mitochondrial ADP, ATP Translocases/antagonists & inhibitors , Mitochondrial ADP, ATP Translocases/chemistry , Models, Molecular , Phosphate Transport Proteins/metabolism , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Substrate Specificity
16.
J Biol Chem ; 290(13): 8206-17, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25653283

ABSTRACT

Mitochondrial carriers, including uncoupling proteins, are unstable in detergents, which hampers structural and mechanistic studies. To investigate carrier stability, we have purified ligand-free carriers and assessed their stability with a fluorescence-based thermostability assay that monitors protein unfolding with a thiol-reactive dye. We find that mitochondrial carriers from both mesophilic and thermophilic organisms exhibit poor stability in mild detergents, indicating that instability is inherent to the protein family. Trends in the thermostability of yeast ADP/ATP carrier AAC2 and ovine uncoupling protein UCP1 allow optimal conditions for stability in detergents to be established but also provide mechanistic insights into the interactions of lipids, substrates, and inhibitors with these proteins. Both proteins exhibit similar stability profiles across various detergents, where stability increases with the size of the associated detergent micelle. Detailed analysis shows that lipids stabilize carriers indirectly by increasing the associated detergent micelle size, but cardiolipin stabilizes by direct interactions as well. Cardiolipin reverses destabilizing effects of ADP and bongkrekic acid on AAC2 and enhances large stabilizing effects of carboxyatractyloside, revealing that this lipid interacts in the m-state and possibly other states of the transport cycle, despite being in a dynamic interface. Fatty acid activators destabilize UCP1 in a similar way, which can also be prevented by cardiolipin, indicating that they interact like transport substrates. Our controls show that carriers can be soluble but unfolded in some commonly used detergents, such as the zwitterionic Fos-choline-12, which emphasizes the need for simple validation assays like the one used here.


Subject(s)
Lipids/chemistry , Mitochondrial ADP, ATP Translocases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Cardiolipins/chemistry , Detergents/chemistry , Enzyme Inhibitors/chemistry , Humans , Ion Channels/chemistry , Micelles , Mitochondrial ADP, ATP Translocases/antagonists & inhibitors , Mitochondrial Proteins/chemistry , Protein Binding , Protein Denaturation , Protein Stability , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Solubility , Transition Temperature , Uncoupling Protein 1
18.
Proc Natl Acad Sci U S A ; 108(27): 11199-204, 2011 Jul 05.
Article in English | MEDLINE | ID: mdl-21690402

ABSTRACT

Neither the number of HIV-1 proviruses within individual infected cells in HIV-1-infected patients nor their genetic relatedness within individual infected cells and between cells and plasma virus are well defined. To address these issues we developed a technique to quantify and genetically characterize HIV-1 DNA from single infected cells in vivo. Analysis of peripheral blood CD4(+) T cells from nine patients revealed that the majority of infected cells contain only one copy of HIV-1 DNA, implying a limited potential for recombination in virus produced by these cells. The genetic similarity between HIV populations in CD4(+) T cells and plasma implies ongoing exchange between these compartments both early and late after infection.


Subject(s)
CD4-Positive T-Lymphocytes/virology , DNA, Viral/blood , DNA, Viral/genetics , HIV Infections/blood , HIV Infections/virology , HIV-1/genetics , HIV-1/isolation & purification , Base Sequence , Chronic Disease , DNA Primers/genetics , Genetic Variation , Humans , Phylogeny , Proviruses/genetics , Proviruses/isolation & purification , RNA, Viral/blood , RNA, Viral/genetics , Recombination, Genetic , Sequence Analysis, DNA/methods , Time Factors , Viral Load
19.
Elife ; 132024 May 23.
Article in English | MEDLINE | ID: mdl-38780415

ABSTRACT

Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.


All living organisms breakdown food molecules to generate energy for processes, such as growing, reproducing and movement. The series of chemical reactions that breakdown sugars into smaller molecules ­ known as glycolysis ­ is so important that it occurs in all life forms, from bacteria to humans. In higher organisms, such as fungi and animals, these reactions take place in the cytosol, the space surrounding the cell's various compartments. A transport protein then shuttles the end-product of glycolysis ­ pyruvate ­ into specialised compartments, known as the mitochondria, where most energy is produced. However, recently it was discovered that a group of living organisms, called the stramenopiles, have a branched glycolysis in which the enzymes involved in the second half of this process are located in both the cytosol and mitochondrial matrix. But it was not known how the intermediate molecules produced after the first half of glycolysis enter the mitochondria. To answer this question, Pyrihová et al. searched for transport protein(s) that could link the two halves of the glycolysis pathway. Computational analyses, comparing the genetic sequences of many transport proteins from several different species, revealed a new group found only in stramenopiles. Pyrihová et al. then used microscopy to visualise these new transport proteins ­ called GIC-1 and GIC-2 ­ in the parasite Blastocystis, which infects the human gut, and observed that they localise to mitochondria. Further biochemical experiments showed that GIC-1 and GIC-2 can physically bind these intermediate molecules, but only GIC-2 can transport them across membranes. Taken together, these observations suggest that GIC-2 links the two halves of glycolysis in Blastocystis. Further analyses could reveal corresponding transport proteins in other stramenopiles, many of which have devastating effects on agriculture, such as Phytophthora, which causes potato blight, or Saprolegnia, which causes skin infections in farmed salmon. Since human cells do not have equivalent transporters, they could be new drug targets not only for Blastocystis, but for these harmful pathogens as well.


Subject(s)
Blastocystis , Cytosol , Glycolysis , Mitochondria , Blastocystis/metabolism , Blastocystis/genetics , Humans , Mitochondria/metabolism , Cytosol/metabolism , Biological Transport , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
20.
Proc Natl Acad Sci U S A ; 107(5): 1930-5, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20133838

ABSTRACT

In oxidative phosphorylation, complex I (NADH:quinone oxidoreductase) couples electron transfer to proton translocation across an energy-transducing membrane. Complex I contains a flavin mononucleotide to oxidize NADH, and an unusually long series of iron-sulfur (FeS) clusters, in several subunits, to transfer the electrons to quinone. Understanding coupled electron transfer in complex I requires a detailed knowledge of the properties of individual clusters and of the cluster ensemble, and so it requires the correlation of spectroscopic and structural data: This has proved a challenging task. EPR studies on complex I from Bos taurus have established that EPR signals N1b, N2 and N3 arise, respectively, from the 2Fe cluster in the 75 kDa subunit, and from 4Fe clusters in the PSST and 51 kDa subunits (positions 2, 7, and 1 along the seven-cluster chain extending from the flavin). The other clusters have either evaded detection or definitive signal assignments have not been established. Here, we combine double electron-electron resonance (DEER) spectroscopy on B. taurus complex I with the structure of the hydrophilic domain of Thermus thermophilus complex I. By considering the magnetic moments of the clusters and the orientation selectivity of the DEER experiment explicitly, signal N4 is assigned to the first 4Fe cluster in the TYKY subunit (position 5), and N5 to the all-cysteine ligated 4Fe cluster in the 75 kDa subunit (position 3). The implications of our assignment for the mechanisms of electron transfer and energy transduction by complex I are discussed.


Subject(s)
Electron Transport Complex I/chemistry , Animals , Bacterial Proteins/chemistry , Cattle , Electron Spin Resonance Spectroscopy , Electron Transport , Energy Transfer , Models, Molecular , Molecular Structure , Protein Structure, Tertiary , Thermus thermophilus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL