Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Bone Miner Res ; 39(2): 95-105, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38477719

ABSTRACT

Laparoscopic sleeve gastrectomy (LSG), the most common bariatric surgical procedure, leads to durable weight loss and improves obesity-related comorbidities. However, it induces abnormalities in bone metabolism. One unexplored potential contributor is the gut microbiome, which influences bone metabolism and is altered after surgery. We characterized the relationship between the gut microbiome and skeletal health in severe obesity and after LSG. In a prospective cohort study, 23 adults with severe obesity underwent skeletal health assessment and stool collection preoperatively and 6 mo after LSG. Gut microbial diversity and composition were characterized using 16S rRNA gene sequencing, and fecal concentrations of short-chain fatty acids (SCFA) were measured with LC-MS/MS. Spearman's correlations and PERMANOVA analyses were applied to assess relationships between the gut microbiome and bone health measures including serum bone turnover markers (C-terminal telopeptide of type 1 collagen [CTx] and procollagen type 1 N-terminal propeptide [P1NP]), areal BMD, intestinal calcium absorption, and calciotropic hormones. Six months after LSG, CTx and P1NP increased (by median 188% and 61%, P < .01) and femoral neck BMD decreased (mean -3.3%, P < .01). Concurrently, there was a decrease in relative abundance of the phylum Firmicutes. Although there were no change in overall microbial diversity or fecal SCFA concentrations after LSG, those with greater within-subject change in gut community microbial composition (ß-diversity) postoperatively had greater increases in P1NP level (ρ = 0.48, P = .02) and greater bone loss at the femoral neck (ρ = -0.43, P = .04). In addition, within-participant shifts in microbial richness/evenness (α-diversity) were associated with changes in IGF-1 levels (ρ = 0.56, P < .01). The lower the postoperative fecal butyrate concentration, the lower the IGF-1 level (ρ = 0.43, P = .04). Meanwhile, the larger the decrease in butyrate concentration, the higher the postoperative CTx (ρ = -0.43, P = .04). These findings suggest that LSG-induced gut microbiome alteration may influence skeletal outcomes postoperatively, and microbial influences on butyrate formation and IGF-1 are possible mechanisms.


Laparoscopic sleeve gastrectomy (LSG), the most common bariatric surgical procedure, is a highly effective treatment for obesity because it produces dramatic weight loss and improves obesity-related medical conditions. However, it also results in abnormalities in bone metabolism. It is important to understand how LSG affects the skeleton, so that bone loss after surgery might be prevented. We studied adult men and women before and 6 mo after LSG, and we explored the relationship between the altered gut bacteria and bone metabolism changes. We found that: Those with greater shifts in their gut bacterial composition had more bone loss.Butyrate, a metabolite produced by gut bacteria from fermentation of dietary fiber, was associated with less bone breakdown and higher IGF-1 level (a bone-building hormone). We conclude that changes in the gut bacteria may contribute to the negative skeletal impact of LSG and reduced butyrate production by the gut bacteria leading to lower IGF-1 levels is a possible mechanism.


Subject(s)
Bone and Bones , Gastrectomy , Gastrointestinal Microbiome , Laparoscopy , Humans , Female , Male , Adult , Bone and Bones/metabolism , Middle Aged , Feces/microbiology , Biomarkers/metabolism
2.
J Clin Endocrinol Metab ; 108(2): 351-360, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36196648

ABSTRACT

CONTEXT: Laparoscopic sleeve gastrectomy (LSG), now the most commonly performed bariatric operation, is a highly effective treatment for obesity. While Roux-en-Y gastric bypass is known to impair intestinal fractional calcium absorption (FCA) and negatively affect bone metabolism, LSG's effects on calcium homeostasis and bone health have not been well characterized. OBJECTIVE: We determined the effect of LSG on FCA, while maintaining robust 25-hydroxyvitamin D (25OHD) levels and recommended calcium intake. DESIGN, SETTING, PARTICIPANTS: Prospective pre-post observational cohort study of 35 women and men with severe obesity undergoing LSG. MAIN OUTCOMES: FCA was measured preoperatively and 6 months postoperatively with a gold-standard dual stable isotope method. Other measures included calciotropic hormones, bone turnover markers, and bone mineral density (BMD) by dual-energy X-ray absorptiometry and quantitative computed tomography. RESULTS: Mean ± SD FCA decreased from 31.4 ± 15.4% preoperatively to 16.1 ± 12.3% postoperatively (P < 0.01), while median (interquartile range) 25OHD levels were 39 (32-46) ng/mL and 36 (30-46) ng/mL, respectively. Concurrently, median 1,25-dihydroxyvitamin D level increased from 60 (50-82) pg/mL to 86 (72-107) pg/mL (P < 0.01), without significant changes in parathyroid hormone or 24-hour urinary calcium levels. Bone turnover marker levels increased substantially, and areal BMD decreased at the proximal femur. Those with lower postoperative FCA had greater areal BMD loss at the total hip (ρ = 0.45, P < 0.01). CONCLUSIONS: FCA decreases after LSG, with a concurrent rise in bone turnover marker levels and decline in BMD, despite robust 25OHD levels and with recommended calcium intake. Decline in FCA could contribute to negative skeletal effects following LSG.


Subject(s)
Gastric Bypass , Laparoscopy , Obesity, Morbid , Male , Humans , Female , Calcium/metabolism , Prospective Studies , Vitamin D , Vitamins , Bone Density , Obesity, Morbid/surgery , Obesity, Morbid/metabolism , Calcium, Dietary , Gastrectomy/methods
3.
J Clin Endocrinol Metab ; 107(4): 1053-1064, 2022 03 24.
Article in English | MEDLINE | ID: mdl-34888663

ABSTRACT

CONTEXT: The adverse skeletal effects of Roux-en-Y gastric bypass (RYGB) are partly caused by intestinal calcium absorption decline. Prebiotics, such as soluble corn fiber (SCF), augment colonic calcium absorption in healthy individuals. OBJECTIVE: We tested the effects of SCF on fractional calcium absorption (FCA), biochemical parameters, and the fecal microbiome in a post-RYGB population. METHODS: Randomized, double-blind, placebo-controlled trial of 20 postmenopausal women with history of RYGB a mean 5 years prior; a 2-month course of 20 g/day SCF or maltodextrin placebo was taken orally. The main outcome measure was between-group difference in absolute change in FCA (primary outcome) and was measured with a gold standard dual stable isotope method. Other measures included tolerability, adherence, serum calciotropic hormones and bone turnover markers, and fecal microbial composition via 16S rRNA gene sequencing. RESULTS: Mean FCA ± SD at baseline was low at 5.5 ± 5.1%. Comparing SCF to placebo, there was no between-group difference in mean (95% CI) change in FCA (+3.4 [-6.7, +13.6]%), nor in calciotropic hormones or bone turnover markers. The SCF group had a wider variation in FCA change than placebo (SD 13.4% vs 7.0%). Those with greater change in microbial composition following SCF treatment had greater increase in FCA (r2 = 0.72, P = 0.05). SCF adherence was high, and gastrointestinal symptoms were similar between groups. CONCLUSION: No between-group differences were observed in changes in FCA or calciotropic hormones, but wide CIs suggest a variable impact of SCF that may be due to the degree of gut microbiome alteration. Daily SCF consumption was well tolerated. Larger and longer-term studies are warranted.


Subject(s)
Gastric Bypass , Calcium , Calcium, Dietary , Female , Gastric Bypass/adverse effects , Hormones , Humans , Postmenopause , Prebiotics , RNA, Ribosomal, 16S , Vitamin D
4.
Bone ; 131: 115115, 2020 02.
Article in English | MEDLINE | ID: mdl-31689523

ABSTRACT

CONTEXT: The gut hormones peptide YY (PYY) and ghrelin mediate in part the metabolic benefits of Roux-en-Y gastric bypass (RYGB) surgery. However, preclinical data suggest these hormones also affect the skeleton and could contribute to postoperative bone loss. OBJECTIVE: We investigated whether changes in fasting serum total PYY and ghrelin were associated with bone turnover marker levels and loss of bone mineral density (BMD) after RYGB. DESIGN, SETTING, PARTICIPANTS: Prospective cohort of adults undergoing RYGB (n=44) at San Francisco academic hospitals. MAIN OUTCOME MEASURES: We analyzed 6-month changes in PYY, ghrelin, bone turnover markers, and BMD by dual-energy x-ray absorptiometry (DXA) and quantitative computed tomography (QCT). We calculated the uncoupling index (UI), reflecting the relative balance of bone resorption and formation. RESULTS: Postoperatively, there was a trend for an increase in PYY (+25pg/mL, p=0.07) and a significant increase in ghrelin (+192pg/mL, p<0.01). PYY changes negatively correlated with changes in spine BMD by QCT (r=-0.36, p=0.02) and bone formation marker P1NP (r=-0.30, p=0.05). Relationships were significant after adjustments for age, sex, and weight loss. No consistent relationships were found between ghrelin and skeletal outcomes. Mean 6-month UI was -3.3; UI correlated with spine BMD loss by QCT (r=0.40, p=0.01). CONCLUSIONS: Postoperative PYY increases were associated with attenuated increases in P1NP and greater declines in spine BMD by QCT. Uncoupling of bone turnover correlated with BMD loss. These findings suggest a role for PYY in loss of bone mass after RYGB and highlight the relationship between intestinal and skeletal metabolism.


Subject(s)
Gastric Bypass , Peptide YY , Adult , Bone Density , Bone Remodeling , Gastric Bypass/adverse effects , Humans , Prospective Studies
5.
J Clin Endocrinol Metab ; 104(3): 711-720, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30657952

ABSTRACT

Context: Bariatric surgery results in reduced muscle mass as weight is lost, but postoperative changes in muscle strength and performance are incompletely understood. Objective: To examine changes in body composition, strength, physical activity, and physical performance following Roux-en-Y gastric bypass (RYGB). Design, Participants, Outcomes: In a prospective cohort of 47 adults (37 women, 10 men) aged 45 ± 12 years (mean ± SD) with body mass index (BMI) 44 ± 8 kg/m2, we measured body composition by dual-energy X-ray absorptiometry, handgrip strength, physical activity, and physical performance (chair stand time, gait speed, 400-m walk time) before and 6 and 12 months after RYGB. Relative strength was calculated as absolute handgrip strength/BMI and as absolute strength/appendicular lean mass (ALM). Results: Participants experienced substantial 12-month decreases in weight (-37 ± 10 kg or 30% ± 7%), fat mass (-48% ± 12%), and total lean mass (-13% ± 6%). Mean absolute strength declined by 9% ± 17% (P < 0.01). In contrast, relative strength increased by 32% ± 25% (strength/BMI) and 9% ± 20% (strength/ALM) (P < 0.01 for both). There were clinically significant postoperative improvements in all physical performance measures, including mean improvement in gait speed of >0.1 m/s (P < 0.01) and decrease in 400-m walk time of nearly a full minute. Conclusions: In the setting of dramatic weight loss, lean mass and absolute grip strength declined after RYGB. However, relative muscle strength and physical function improved meaningfully and are thus noteworthy positive outcomes of gastric bypass.


Subject(s)
Body Composition/physiology , Gastric Bypass , Hand Strength/physiology , Obesity, Morbid/physiopathology , Physical Functional Performance , Absorptiometry, Photon , Adult , Aged , Female , Humans , Male , Middle Aged , Muscle, Skeletal/physiology , Obesity, Morbid/surgery , Prospective Studies , Treatment Outcome , Weight Loss/physiology
SELECTION OF CITATIONS
SEARCH DETAIL